990 resultados para Mineral addition
Resumo:
The generation of industrial wastes has been increased more and more in recent decades, motivating studies about a correct sustainable allocation and that also represents advantages for their generators. In this context, are included two companies of cleaning products niche, located in São José do Mipibu/RN, that produces industrial sludge at a sewage treatment plant, and that is the main approach of this research. Given this, it was studied the incorporation potentiality of this sludge as a mineral addition in cement matrix for concrete production due it high capacity of wastes immobilization inside this material, which are subsequently used in the company for making precast articles. Were added different sludge concentrations (5, 10, 15 and 20%) in a common trait (1: 2: 3), and evaluated their techniques and microstructural implications via workability test in fresh state and compressive strength, full porosity and scanning electron microscopy (SEM) in the hardened state. The results demonstrated the feasibility of the process both from a technical and environmental view as economical. All concretes produced with residue showed an increase of workability given the nature of the waste that had surfactants substances capable of adsorbing tiny particles of air into the batter. However, for all concentrations were obtained lower compressive resistances than standard concrete, with a reduction of 39% for samples with 20% of sludge. This are attributed mainly to an increase of porosity in the transition zone of these material, resulting from increased formation of ettringite at the detriment to the formation of other compounds, but which still allows the use of these for the manufacture of concrete articles with non-structural nature, such as precast floor. In addition, the water absorption and void ratio increased slightly for all samples, except the concrete with 20% of waste that has a reduction for the last parameter. Given this context, the recommended maximum level is 20%, constituting a significant proportion and able to allocate sustainably all waste generated in the industry.
Resumo:
The mode I fracture toughness of concrete can be experimentally determined using three point bend beam in conjunction with digital image correlation (DIC). Three different geometrically similar sizes of beams are cast for this study. To study the influence of fly ash and silica fume on fracture toughness of SCC, three SCC mixes are prepared with and without mineral additions. The scanning electron microscope (SEM) images are taken on the fractured surface to add information on fracture process in SCC. From this study, it is concluded that the fracture toughness of SCC with mineral addition is higher when compared to those without mineral addition.
Resumo:
An economical solution for cementing oil wells is the use of pre-prepared dry mixtures containing cement and additives. The mixtures may be formulated, prepared and transported to the well where is added water to be pumped.Using this method, becomes dispensable to prepare the cement mixes containing additives in the cementing operation, reducing the possibility of error. In this way, the aim of this work is to study formulations of cement slurries containing solid additives for primary cementing of oil wells onshore for typical depths of 400, 800 and 1,200 meters. The formulations are comprised of Special Class Portland cement, mineral additions and solids chemical additives.The formulated mixtures have density of 1.67 g / cm ³ (14.0 lb / gal). Their optimization were made through the analysis of the rheological parameters, fluid loss results, free water, thickening time, stability test and mechanical properties.The results showed that mixtures are in conformity the specifications for cementing oil wells onshore studied depths
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An economical solution for cementing oil wells is the use of pre-prepared dry mixtures containing cement and additives. The mixtures may be formulated, prepared and transported to the well where is added water to be pumped.Using this method, becomes dispensable to prepare the cement mixes containing additives in the cementing operation, reducing the possibility of error. In this way, the aim of this work is to study formulations of cement slurries containing solid additives for primary cementing of oil wells onshore for typical depths of 400, 800 and 1,200 meters. The formulations are comprised of Special Class Portland cement, mineral additions and solids chemical additives.The formulated mixtures have density of 1.67 g / cm ³ (14.0 lb / gal). Their optimization were made through the analysis of the rheological parameters, fluid loss results, free water, thickening time, stability test and mechanical properties.The results showed that mixtures are in conformity the specifications for cementing oil wells onshore studied depths
Resumo:
Optical absorption and EPR studies of the mineral tenorite, a cupric oxide, which originated from Mexico and contains 54.40 wt% of CuO. EPR spectral results indicate two Cu(II) closely interacting ions to give a d2 type structure. The calculated spin Hamiltonian at Rt and LNT are g = 2.160 and D = 125 G . The intensity of resonance line is not the same in low and high field regions. The optical absorption spectrum is due to Cu(II) which three sets of energies indicating Cu(II) in two independent tetragonal C4v symmetry, in addition to d2 structure of octahedral coordination. The octahedral and tetragonal field parameters are compared with those reported for several other copper containing minerals.
Resumo:
The mineral nealite Pb4Fe2+(AsO3)2Cl4•2H2O is of archaeological significance as it is man made mineral formed through the dumping of mine wastes in the sea. The mineral has been studied by Raman spectroscopy. Raman spectroscopy identifies intense Raman bands at 708 and 732 cm-1 assigned to AsO33- stretching vibrations. In addition low intensity bands are observed at 604 and 632 cm-1 which are attributed to As2O42- symmetric and antisymmetric stretching modes. Low intensity Raman band is observed at 831 cm-1 and is assigned to the AsO44- stretching vibration. Intense Raman bands at 149 and 183 cm-1 are attributed to M-Cl stretching vibrations. Raman spectroscopy identifies arsenic anions in different oxidation states in the mineral. The molecular structure of the mineral nealite, as indicated by Raman spectroscopy, is more complex than has been reported by previous studies.
Resumo:
Some minerals are colloidal and are poorly diffracting . Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe4(AsO4)(SO4)(OH)•15H2O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43-, SO42- and water stretching vibrations. The sharp band at 3515 cm-1 is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe3+,AsO4,SO4,H2O).
Resumo:
The mineral tooeleite Fe6(AsO3)4SO4(OH)4�4H2O is secondary ferric arsenite sulphate mineral which has environmental significance for arsenic remediation because of its high stability in the regolith. The mineral has been studied by X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The XRD result indicates tooeleite can form more crystalline solids in an acid environment than in an alkaline environment. Infrared spectroscopy identifies moderately intense band at 773 cm�1 assigned to AsO3� 3 symmetric stretching vibration. Raman spectroscopy identifies three bands at 803, 758 and 661 cm�1 assigned to the symmetric and antisymmetric stretching vibrations of AsO3� 3 and As-OH stretching vibration respectively. In addition, the infrared bands observed at 1116, 1040, 1090, 981 and 616 cm�1, are assigned to the m3, m1 and m4 modes of SO2� 4 . The same bands are observed at 1287, 1085, 983 and 604 cm�1 in the Raman spectrum. As3d band at binding energy of 44.05 eV in XPS confirms arsenic valence of tooeleite is +3. These characteristic bands in the IR and Raman spectra provide useful basis for identifying the mineral tooeleite.
Resumo:
As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC
Resumo:
This paper addresses the regulatory issues arising in developing a new regulatory model for the New South Wales Coal Industry. As such, it identifies the relevant literature on this subject, the options available for reform, and the experience of Australian and key international bodies responsible for the development of regulatory standards in this area. In particular it: Identifies the main shortcomings in the existing regulatory approach; Identifies the potential roles/main strengths and weaknesses of different types of standards (eg specification, performance, process and systems-based rules) and potential “best practice’ combinations of standards; Examines the appropriateness of the current regulatory regime whereby the general OHS legislation (including the general duty provisions) applies to mining in addition to the large body of regulation which is specific to mining; Identifies the importance of, and possible means of addressing, issues of worker participation within the coal mining industry; Draws on the literature on what motivates companies and individuals for the purpose of recommending key provisions for inclusion in new legislation to provide appropriate personal and organisational incentives; Draws on the literature on major hazards facilities to suggest the appropriate roles for OHS management systems and safety reports or comparable approaches (eg mine safety management plans); Draws on the United Kingdom (UK) and United States of America (USA) experience of coal mine safety and its regulation for comparative purposes, and for insights as to what sort of regulation most effectively reduces work related injury and disease in coal mining; Examines the relevant roles of International Labour Organisation (ILO) Conventions; Examines the extent to which different regulatory regimes would be appropriate to open cut and underground coal mining; and Examines options for reform. This paper is focussed specifically on the issues identified above.
Resumo:
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. © 2011 Duncan et al.