932 resultados para Microwave ovens.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present paper microwave radiation has been used to introduce N-sulfo and O-sulfo groups into chitosan with a thigh degree of substitution and low-molecular weight. The sulfation of chitosan was performed in microwave ovens. It was found that microwave heating is a convenient way to obtain a wide range of products of different degrees of substitution and molecular weight only by changing reaction time or/and radiation power. Moreover, microwave radiation accelerated the degradation of sulfated chitosan, and the molecular weight of sulfated chitosan was considerably lower than that obtained by traditional heating. There are no differences in the chemical structure of sulfated chitosan obtained by microwave and by conventional technology. FTIR and C-13 NMR spectral analyses demonstrated that a significantly shorter time is required to obtain a satisfactory degree of substitution and molecular weight by microwave radiation than by conventional technology. In this present paper, we also determined antioxidant activity of low-molecular-weight and high-sulfate-content chitosans (LCTS). The results showed LCTS could scavenge superoxide and hydroxyl radical. Its IC50 is 0.025 and 1.32mg/mL, respectively. It is a potential antioxidant in vitro. (C) 2004 Published by Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) was used to investigated the effects of volatile solvents (such as water, propanone, ethanol, methanol or ethyl ether), treatment and drying processes, microwave ovens, drying ovens, and vacuum desiccators or freeze driers, on silica morphology. Silica gel was obtained from diluted sodium silicate (1:5 w/w SiO2:H2O). The results showed that the drying process based on freeze drying is more efficient for structural conservation of the precipitate. Treatment with volatile solvents does not change the shape of the aggregates, but has an important role in the determination of aggregate surface roughness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work develops and optimizes a method to determine copper in samples of feces and fish feed by graphite furnace atomic absorption spectrometry (GFAAS) through the direct introduction of slurries of the samples into the spectrometer's graphite tube coated internally with metallic rhodium and tungsten carbide that acts as chemical modifiers. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (0.50% m/v of feces or feed devoid of copper) were 0.24 and 0.79 μg L -1 for the standard feces slurries and 0.26 and 0.87 μg L -1 for the standard feed slurries. The proposed method was applied in studies of absorption of copper in different fish feeds and their results proved compatible with that obtained from samples mineralized by acid digestion using microwave oven. © Springer Science+Business Media, LLC 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To evaluate the variations of temperature in 2 models of domestic micro-wave ovens, single emission (F 1) and dual emission of waves (F 2), to investigate areas of higher and lower intensity of the electromagnetic field. Materials and methods: A beaker containing water (60mL, 26°C) was irradiated into each of 5 positions (front - P 1; right - P 2; posterior - P 3; left - P 4; central - P 5) within each oven (900W/ 2min). To evaluate the effectiveness of disinfection in F 2, Bacillus subtilis suspension was irradiated in each of the 5 positions for 2, 4 and 6minutes. Data were analyzed by Kruskal-Wallis and nonparametric multiple comparisons at 5% significance level. Results: 84.80°C (F 1) and 92.01°C (F 2) were mean levels of temperature. For F 1, the positions P 1, P 2, P 3 and P 5 showed similar values among them and upper than P 4, while for F 2, the positions P 1, P 2 and P 4 were similar among them and upper than P 3 and P 5. Kruskal-Wallis test found significant differences between positions and models of ovens (p<0.05). It was observed that P 2 promoted bacterial death from 4min of irradiation, while the other positions promoted disinfection at 6min of irradiation. Conclusion: The protocols of position and time specified for the various procedures in microwave ovens can be different according to the characteristics of each device due to the electromagnetic field heterogeneity. © 2011 Sociedade Portuguesa de Estomatologia e Medicina Dentária.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of microwave radiation on the sample preparation has been expanding increasingly in areas involving decomposition by wet and dry roads, fusion, extraction, acceleration of chemical reactions, for example. Currently, the use of microwave ovens for analytical purposes are recognized for having excellent performance for organic and inorganic samples. In the international market there are several kinds of microwaves oven which adapt the varied purposes, however yet with elevated prices which incapacitate your use as routine equipment in laboratory. Thus, many researchers have been choosing for developing own projects of microwaves oven production or to use domestic oven for the laboratory, with or without adaptations. For the evaluation of the proposed method was used in the Kjeldahl methodology for determining total nitrogen in samples of crude protein, using a domestic microwave oven and a digester pot made up in TeflonTM and distillation by steam. Were made to adapt and characterization of a domestic microwave oven, the confeccion vessel digester and the metal support for the vessel. The accuracy of the proposed method was confirmed by comparison of two methods, the standard method for conventional heating and by the proposed method, with heating by microwave radiation through the calculated values of relative standard deviation analysis

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The past years have seen a great interest in the use of frequency selective surfaces (FSS), as spatial filters, in many microwave applications. Among these, we highlight applications in telecommunication systems (such as satellite communications and radar), high gain antennas (combined with planar antennas) and (home and industrial) microwave ovens. The FSS is usually composed of two-dimensional periodic arrays, with equally spaced elements, which may be metallic patches (printed on dielectric substrates) or aperture (holes in thin metal surfaces). Using periodic arrays, the FSS have been able to meet the demands of the telecommunications industry. However, new demands are finding technological limitations. In this context, adverse filtering requirements have forced designers to use FSS optimization methods to find specific formats of FSS elements. Another alternative that has been used to increase the selectivity of the FSS is the cascaded FSS, a simple technique that has as main drawback the increased dimensions of the structure, as well as its weight. This work proposes the development of a new class of selective surfaces frequency (FSS) composed of quasi-periodic (or non-periodic) arrangements. The proposed FSS have no array periodicity, in relation with the spatial position of their elements. The frequency responses of these structures were simulated using commercial softwares that implement full-wave methods. For the purpose of validation of this study, FSS prototypes were built and measured, being possible to observe a good agreement between simulated and measured results. The main conclusions of this work are presented, as well as suggestions for future works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: The area near the Araguaia River, between Goiás and Mato Grosso States, is the location of a portion of the recharging of the Guarani Aquifer, which is one of the world¿s largest aquifer systems and an important source of drinking water. This reservoir could be threatened by the widespread use of pesticides in maize and soybean cultivation in this area. Thus, this work developed analytical methods for the determination of imazethapyr, nicosulfuron, imazaquin, carbofuran, atrazine, linuron, clorimuronethyl and diflubenzuron, pesticides used in maize and soybean cultivation. Pesticide separation, identification and quantification were performed using High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) and Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS). Solid Phase Extraction (SPE) with C18 sorbents was optimized for sample extraction from water. Soil samples were extracted by mechanical shaking, sonication or microwave-assisted extraction with industrial and home microwave ovens. Methods were validated resulting in limits of quantification (LOQ) for the pesticides in water in the range of 0.015-0.1 ng mL, using SPE-HPLC-DAD, and 0.01 ng mL using LC-ESI-MS/MS. LOQ of 1 ng mL for all pesticides in soil were achieved using the home microwave oven and LC-ESI-MS/MS. Recoveries for pesticides with all methods were in the range 70-120 %. Relative standard deviations for repeatability and intermediate precision were less than 15 %. SPEHPLC- DAD and LC-ESI-MS/MS were employed for the analysis of samples of water from the recharge area and most of the pesticides were detected at concentrations below the minimum residue limit (MRL) of 0.1 ng mL established by the European Community. The home microwave oven and LC-ESI-MS/MS were used for the analysis of soil samples from two other regions of Brazil and the pesticides were not detected in these samples. Adsorption and desorption parameters were determined for imazethapyr, imazaquin, nicosulfuron and chlorimuron-ethyl, indicating that these pesticides have little affinity for the soil of the region of the Guarani Aquifer recharge, and show significant leaching potential, according to the ground water ubiquity score (GUS index) for these pesticides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile and rapid polycondensation reaction of disodium bisphenol A with bis(chlorophthalimide)s was preformed with a domestic microwave oven in o-dichlorobenzene by phase-transfer catalysis. The polymerization reactions, in comparison with conventional heating polycondensation, proceeded rapidly and were completed within 25 min. The polymerizations gave the corresponding poly(ether imide)s with inherent viscosities of 0.55-0.92 dL g(-1). The effects of various factors on the polymerization, such as the amount of the catalyst, the reaction time, and the microwave power were studied. The properties of the polymers were briefly characterized.