11 resultados para Microtubes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the authors measure throughput of sonic diamond microtubes and micronozzles that can work as passive gas flow controllers and flow meters under choking conditions. The behavior of the outlet pressure through the microdevices using an experimental setup with constant volume and constant temperature was determined in order to obtain the critical throughput, the critical mass flow rate, and the discharge coefficients of the diamond sonic microdevices. © 2007 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica sub-microtubes loaded with platinum nanoparticles have been prepared in flexible non-woven mats using co-axial electrospinning technique. A partially gelated sol made from tetraethyl orthosilicate was used as the silica precursor, and oil was used as the sacrificial template for the hollow channel generation. Platinum has been supported on the wall of the tubes just adding the metallic precursor to the sol–gel, thus obtaining the supported catalyst by one-pot method. The silica tubes have a high aspect ratio with external/internal diameters of 400/200 nm and well-dispersed platinum nanoparticles of around 2 nm. This catalyst showed a high NO conversion with very high selectivity to N2 at mild conditions in the presence of excess oxygen when using C3H6 as reducing agent. This relevant result reveals the potential of this technique to produce nanostructured catalysts onto easy to handle conformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: INTRODUCTION : Molecular analyses are auxiliary tools for detecting Koch's bacilli in clinical specimens from patients with suspected tuberculosis (TB). However, there are still no efficient diagnostic tests that combine high sensitivity and specificity and yield rapid results in the detection of TB. This study evaluated single-tube nested polymerase chain reaction (STNPCR) as a molecular diagnostic test with low risk of cross contamination for detecting Mycobacterium tuberculosis in clinical samples. METHODS: Mycobacterium tuberculosis deoxyribonucleic acid (DNA) was detected in blood and urine samples by STNPCR followed by agarose gel electrophoresis. In this system, reaction tubes were not opened between the two stages of PCR (simple and nested). RESULTS: STNPCR demonstrated good accuracy in clinical samples with no cross contamination between microtubes. Sensitivity in blood and urine, analyzed in parallel, was 35%-62% for pulmonary and 41%-72% for extrapulmonary TB. The specificity of STNPCR was 100% in most analyses, depending on the type of clinical sample (blood or urine) and clinical form of disease (pulmonary or extrapulmonary). CONCLUSIONS: STNPCR was effective in detecting TB, especially the extrapulmonary form for which sensitivity was higher, and had the advantage of less invasive sample collection from patients for whom a spontaneous sputum sample was unavailable. With low risk of cross contamination, the STNPCR can be used as an adjunct to conventional methods for diagnosing TB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Needle fibre calcite is one of the most ubiquitous habits of calcite in vadose environments (caves deposits, soil pores, etc.). Its origin, either through inorganic, indirect or direct biological processes, has long been debated. In this study, investigations at 11 sites in Europe, Africa and Central America support arguments for its biogenic origin. The wide range of needle morphologies is the result of a gradual evolution of the simplest type, a rod. This rod is the elementary brick which, by aggregation and welding, builds more complex needles. The absence of cross-welded needles implies that they are welded in a mould, or under a longitudinal and unidirectional constraint, before being released inside the soil pores. The difference between the lengthening of the needles and the c axis can be explained by the existence of needles observed under a scanning electron microscope in organic sleeves, which can act as a mould during rod growth. Complex morphologies with epitaxial outgrowths on straight rods cannot have grown entirely inside organic microtubes; they must result from soil diagenesis after the release of straight rods in a soil-free medium. Whisker crystals are interpreted as the result of growth and coalescence of euhedral crystals on a rod. Rhomb chains are considered to be the consequence of successive epitaxial growth steps on a needle during variations in growth conditions. Isotopic signatures for needle fibre calcite vary from -16.63[per mille] to +1.10[per mille] and from -8.63[per mille] to -2.25[per mille] for Delta13C and Delta18O, respectively. The absence of high Delta18O values for needle fibre calcite precludes a purely physicochemical origin (evaporative) for this particular habit of calcite. As epitaxial growth cannot precipitate in the same conditions as initial needles, needle fibre calcite stable isotopic signatures should be used with caution as a proxy for palaeoenvironmental reconstructions. In addition, it is suggested that the term needle fibre calcite should be kept for the original biogenic form. The other habit should be referred to as epitaxial forms of needle fibre calcite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Microsprinkler non-pressure compensating nozzles usually show water flow variation along the lateral line. This study aimed at adapting microtubes into non-compensating system of microsprinklers previous installed in the field, as a self-compensated nozzle, to improve the flow uniformity along the lateral line. Microtubes were adapted to three types of commercial microsprinklers. Tests were conducted, both in the laboratory and in field, to evaluate the microsprinkler performance at four different flows (40, 50, 60 and 70 L h-1) under pressure head range from 75 to 245 kPa. Nozzles presented coefficient of flow-rate variation (CVq) lower than 5.5% and distribution uniformity (DU) greater than 95%, which are classified as excellent. The original spatial water distribution of the microsprinkler did not change by using microtube as a nozzle. This device adapted to non-pressure compensating microsprinklers are functional and operate effectively with flows ranging up to 70 L h-1. Small variations at microsprinkler flows along the lateral line can occur, however, at random manner, which is common for pressure-compensating nozzles. Therefore, the microtube technique is able to control pressure variation in microsprinklers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os parasitas do gênero Leishmania apresentam uma variabilidade de espécies na região Amazônica e para sua correta identificação é necessário o isolamento dos mesmos. Atualmente para o isolamento do parasita e posterior diagnóstico da doença têm se utilizado a técnica de microcultivo in vitro. O objetivo de nosso trabalho foi otimizar a técnica de microcultivo in vitro para o isolamento de Leishmania sp. Para o isolamento, além do microcultivo, foi analisado a técnica de vácuo-aspiração adaptada e a viabilidade do parasita a temperaturas abaixo de 25ºC. No total foram utilizados 18 hamsters, infectados com amostras de casos clínicos de Leishmaniose tegumentar americana, sendo 3 de Leishmania.(Leishmania) amazonensis e 2 de Leishmania.(Viannia) braziliensis o qual foram realizados 56 cultivos por vácuo-aspiração em meio NNN, 12 em microtubos e 23 por microcapilares com RPMI suplementado, mantidos entre 25º e 31ºC. Para a segunda etapa, participaram 7 pacientes, totalizando 6 culturas por vácuo-aspiração e 42 por microcapilares. Conservou-se a baixa temperatura 7 tubos com NNN que foram mantidas a 5ºC. Foi observado que os isolamentos por vácuo-aspiração de amostras de L. (L.) amazonensis e L. (V.) braziliensis em hamsters foram sensíveis a adaptação da técnica, diferente das amostras de pacientes. A positividade variou entre 2 a 8 dias e 4 e 5 dias respectivamente. Os microtubos apresentaram positividade para as mesmas amostras de hamsters no período de 5 a 8 dias. Para as amostras dos pacientes, 2/12 tubos por vácuo-aspiração foram positivos e para isolamento em microcapilares 6/42, valores inferiores aos encontrados na literatura. A amostras conservadas a 5ºC apresentaram viabilidade até o 30º dia. Com estes resultados foi observado que o microcultivo é viável para uso dentro de nossa região, entretanto se mostrou limitado para o isolamento de amostras provenientes de pacientes. Devem-se utilizar outros meios de cultivo, de modo a observar o comportamento do parasito e também aperfeiçoar a coleta do material da lesão a fim de melhorar os resultados de isolamento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho foi realizado com o objetivo de se modelar e avaliar o comportamento hidráulico de microtubos ramificados, com base na relação entre vazão e comprimento dos microtubos para uma pressão de entrada, operando sob regime laminar. Dois modelos matemáticos foram estudados, em que um considerou a perda localizada de carga no dimensionamento dos microtubos ramificados e o outro a desconsiderou. O experimento para validação dos modelos foi conduzido no Laboratrio de Hidráulica da Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ-USP), Piracicaba, SP, medindo-se a vazão dos emissores para as pressões de 14,7; 18,6; 39,2 e 58,9 kPa. A configuração do sistema de irrigação consistiu de uma linha lateral com diâmetro nominal (DN) de 10,0 mm, na qual foram inseridos microtubos conectores com DN de 0,8 mm conectados a um segmento de tubo de derivação e acoplados seis microtubos emissores com DN de 0,7 mm. Verificou-se que, dentre os modelos matemáticos, aquele que considerou a perda localizada de carga apresentou maior exatidão pois teve elevado, um bom índice de Willmott e baixo erro quadrático médio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microtubes and rods with nanopipes of transparent conductive oxides (TCO), such as SnO_2, TiO_2, ZnO and In_2O_3, have been fabricated following a vapor-solid method which avoids the use of catalyst or templates. The morphology of the as-grown tubular structures varies as a function of the precursor powder and the parameters employed during the thermal treatments carried out under a controlled argon flow. These materials have been also doped with different elements of technological interest (Cr, Er, Li, Zn, Sn). Energy Dispersive X-ray Spectroscopy (EDS) measurements show that the concentration of the dopants achieved by the vapor-solid method ranges from 0.5 to _3 at.%. Luminescence of the tubes has been analyzed, with special attention paid to the influence of the dopants on their optical properties. In this work, we summarize and discuss some of the processes involved not only in the anisotropic growth of these hollow micro and nanostructures, but also in their doping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to increased interest in miniaturization, great attention has been given in the recent decade to the micro heat exchanging systems. Literature survey suggests that there is still a limited understanding of gas flows in micro heat exchanging systems. The aim of the current thesis is to further the understanding of fluid flow and heat transfer phenomenon inside such geometries when a compressible working fluid is utilized. A combined experimental and numerical approach has been utilized in order to overcome the lack of employable sensors for micro dimensional channels. After conducting a detailed comparison between various data reduction methodologies employed in the literature, the best suited methodology for gas microflow experimentalists is proposed. A transitional turbulence model is extensively validated against the experimental results of the microtubes and microchannels under adiabatic wall conditions. Heat transfer analysis of single microtubes showed that when the compressible working fluid is used, Nusselt number results are in partial disagreement with the conventional theory at highly turbulent flow regime for microtubes having a hydraulic diameter less than 250 microns. Experimental and numerical analysis on a prototype double layer microchannel heat exchanger showed that compressibility is detrimental to the thermal performance. It has been found that compressibility effects for micro heat exchangers are significant when the average Mach number at the outlet of the microchannel is greater than 0.1 compared to the adiabatic limit of 0.3. Lastly, to avoid a staggering amount of the computational power needed to simulate the micro heat exchanging systems with hundreds of microchannels, a reduced order model based on the porous medium has been developed that considers the compressibility of the gas inside microchannels. The validation of the proposed model against experimental results of average thermal effectiveness and the pressure loss showed an excellent match between the two.