1000 resultados para Microtensile testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element method (FEM)-based study has been carried out for the design of flat microtensile samples to evaluate tensile properties of Pt-aluminide (PtAl) bond coats. The critical dimensions of the sample have been determined using a two-dimensional elastic stress analysis. In the present testing scheme, the ratio of the dimensions of the holding length to the fillet radius of the sample was found important to achieve failure within the gage length. The effect of gage length and grip head length also has been examined. The simulation predictions have been experimentally verified by conducting microtensile test of an actual PtAl bond coat at room temperature. The sample design and testing scheme suggested in this study have also been found suitable for evaluation of tensile properties at high temperature. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mu m Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-mu m Al2O3, ilO-PM Silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-mu m SiOx) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000X, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (11 = 50): Gr1-ST1 + dry; Gr2-ST1 + TC. Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of STI (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, a 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, airabrasion with 110-mu m Al2O3 + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant Arconia ceramics in order to estimate their long-term performance in the mouth. (c) 2007 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: To evaluate the hypothesis that a process of hydrofluoric acid precipitate neutralization and fatigue load cycling performed on human premolars restored with ceramic inlays had an influence on microtensile bond strength results (MTBS). Methods: MOD inlay preparations were performed in 40 premolars (with their roots embedded in acrylic resin). Forty ceramic restorations were prepared using glass-ceramic (IPS Empress). The inner surfaces of all the restorations were etched with 10% hydrofluoric acid for 60 seconds, rinsed with water and dried. The specimens were divided into two groups (N=20): 1-without neutralization; 2-with neutralization. All the restorations were silanized and adhesively cemented (self-curing and self-etching luting composite system, Multilink). Ten premolars from each group were submitted to mechanical cycling (1,400,000 cycles, 50N, 37 degrees C). After cycling, the samples were sectioned to produce non-trimmed beam specimens (vestibular dentin-restoration-lingual dentin set), which were submitted to microtensile testing. Results: Bond strength was significantly affected by the surface treatment (p<0.0001) (no neutralization > neutralization) and mechanical cycling (p<0.0001) (control > cycling) (2-way ANOVA and Tukey test, alpha=.05). Conclusion: Hydrofluoric acid precipitate neutralization appears to significantly damage the resin bond to glass-ceramic and should not be recommended. The clinical simulation of the specimens, by using mechanical cycling, is important when evaluating the ceramic-dentin bond.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aimed to compare the microtensile bond strength of resin cement to alumina-reinforced feldspathic ceramic submitted to acid etching or chairside tribochemical silica coating. Ten blocks of Vitadur-α were randomly divided into 2 groups according to conditioning method: (1) etching with 9.6% hydrofluoric acid or (2) chairside tribochemical silica coating. Each ceramic block was luted to the corresponding resin composite block with the resin cement (Panavia F). Next, bar specimens were produced for microtensile testing. No significant difference was observed between the 2 experimental groups (Student t test, P> .05). Both surface treatments showed similar microtensile bond strength values.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the microtensile bond strength of a repair composite resin to a leucite-reinforced feldspathic ceramic (Omega 900, VITA) submitted to two surface conditionings methods: 1) etching with hydrofluoric acid + silane application or 2) tribochemical silica coating. The null hypothesis is that both surface treatments can generate similar bond strengths. Ten ceramic blocks (6x6x6 mm) were fabricated and randomly assigned to 2 groups (n=5), according to the conditioning method: G1- 10% hydrofluoric acid application for 2 min plus rinsing and drying, followed by silane application for 30 s; G2- airborne particle abrasion with 30 μm silica oxide particles (CoJet-Sand) for 20 s using a chairside air-abrasion device (CoJet System), followed by silane application for 5 min. Single Bond adhesive system was applied to the surfaces and light cured (40 s). Z-250 composite resin was placed incrementally on the treated ceramic surface to build a 6x6x6 mm block. Bar specimens with an adhesive area of approximately 1 ± 0.1 mm2 were obtained from the composite-ceramic blocks (6 per block and 30 per group) for microtensile testing. No statistically significant difference was observed between G1 (10.19 ± 3.1 MPa) and G2 (10.17 ± 3.1 MPa) (p=0.982) (Student's t test; á = 0.05). The null hypothesis was, therefore, accepted. In conclusion, both surface conditioning methods provided similar microtensile bond strengths between the repair composite resin and the ceramic. Further studies using long-term aging procedures should be conducted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ductile-to-brittle transition temperature (DBTT) of a free-standing Pt-aluminide (PtAl) bondcoat was determined using the microtensile testing method and the effect of strain rate variation, in the range 10(-5) to 10(-1) s(-1), on the DBTT studied. The DBTT increased appreciably with the increase in strain rate. The activation energy determined for brittle-to-ductile transition, suggested that such transition is most likely associated with vacancy diffusion. Climb of aOE (c) 100 > dislocations observed in analysis of dislocation structure using a transmission electron microscope (TEM) supported the preceding mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free-standing Pt-aluminide (PtAl) bond coats exhibit a linear stress strain response under tensile loading and undergo brittle cleavage fracture at temperatures below the brittle-to-ductile transition temperature (BDTT). Above the BDTT, these coatings show yielding and fail in a ductile manner. In this paper, the various micromechanisms affecting the tensile fracture stress (FS) below the BDTT and yield strength (YS) above the BDTT in a PtAl bond coat have been ascertained and quantified at various temperatures. The micromechanisms have been identified by carrying out microtensile testing of stand-alone PtAl coating specimens containing different levels of Pt at temperatures between room temperature and 1100 degrees C and correlation of the corresponding fracture mechanisms with the deformation substructure in the coating. An important aspect of the influence of Pt on the tensile behavior, slip characteristics, FS/YS and BDTT in the PtAl coating has also been examined. The addition of Pt enhances the FS of the coating by Pt solid solution strengthening and imparts a concomitant increase in fracture toughness and yet causes a significant increase in the BDTT of the coating. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. The aim of this study was to investigate the influence of shortening the etching time on the bond strength of a conventional and a self-etching primer adhesive system used in primary tooth dentin.Methods. Flat dentin surfaces were obtained from 24 primary molars, randomly assigned to 4 experimental groups. The adhesive systems Single Bond and Clearfil SE Bond were applied in two groups according to the manufacturers' recommendations. In the other two groups, the adhesives were applied after half-time of acid etching, 7 s for Single Bond and 10 s for Clearfil SE Primer. Resin crowns were built up and after 24 h storage in water at 37 &DEG; C, the teeth were sectioned to produce beams with cross-sectional area of approximately 0.49 mm(2). Specimens were tested in tension at 0.5 mm/min until failure. Fractured specimens were analyzed to determine the failure mode.Results. Tensile bond strengths for Single Bond in primary dentin were higher than for Clearfil SE Bond. Shortening of acid etching time improved bond strength only for Single Bond, while no statistically significant difference was observed for Clearfil SE Bond when both etching times were compared.Significance. No detrimental effect on bond strength was observed when the time of acid etching was shortened in 50%. Shortening the time for a procedure in a small child without compromising the quality of the work is a very important finding for the practicing pediatric dentist. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The aim of this in vitro study was to analyze the effect of glass-ionomer cement as a liner on the dentin/resin adhesive interface of lateral walls of occlusal restorations after thermocycling.Materials and Methods: Occlusal cavities were prepared in 60 human molars, divided into six groups: no liner (1 and 4); glass-ionomer cement (GIC, Ketac Molar Easymix, 3M ESPE) (2 and 5); and resin-modified glass-ionomer cement (RMGIC, Vitrebond, 3M ESPE) (3 and 6). Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper Single Bond 2, 3M ESPE) that was mixed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. Specimens of groups 4, 5 and 6 were thermocycled (5 degrees C-55 degrees C) with a dwell time of 30 seconds for 5000 cycles. After this period, teeth were sectioned in approximately 0.8-mm slices. One slice of each tooth was randomly selected for confocal microscopy analysis. The other slices were sectioned into 0.8 nun x 0.8 mm beams, which were submitted to microtensile testing (MPa). Data were analyzed using two-way ANOVA and Tukey test (p < 0.05).Results: There was no detectedstatistical difference on bond strength among groups (alpha < 0.05). Confocal microscopy analysis showed a higher mean gap size in group 4(12.5 mu m) and a higher percentage of marginal gaps in the thermocycled groups. The RNIGIC liner groups showed the lowest percentage of marginal gaps.Conclusions: Lining with RMGIC resulted in less gap formation at the dentin/resin adhesive interface after artificial aging. RMGIC or GIC liners did not alter the microtensile bond strength of adhesive system/resin composite to dentin on the lateral walls of Class I restorations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the bond strength of indirect restorations to dentin using self-adhesive cements with and without the application of adhesive systems.Material and Methods: Seventy-two bovine incisors were used, in which the buccal surfaces were ground down to expose an area of dentin measuring a minimum of 4 x 4 mm. The indirect resin composite Resilab was used to make 72 blocks, which were cemented onto the dentin surface of the teeth and divided into 4 groups (n = 18): group 1: self-adhesive resin cement BiFix SE, applied according to manufacturer's recommendations; group 2: self-adhesive resin cement RelyX Unicem, used according to manufacturer's recommendations; group 3: etch-and-rinse Solobond M adhesive system + BiFix SE; group 4: etch-and-rinse Single Bond 2 adhesive system + RelyX Unicem. The specimens were sectioned into sticks and subjected to microtensile testing in a universal testing machine (EMIC DL-200MF). Data were subjected to one-way ANOVA and Tukey's test (alpha = 5%).Results: The mean values (+/- standard deviation) obtained for the groups were: group 1: 15.28 (+/- 8.17)(a), group 2: 14.60 (+/- 5.21)(a), group 3: 39.20 (+/- 9.98)(c), group 4: 27.59 (+/- 6.57)(b). Different letters indicate significant differences (ANOVA; p = 0.0000).Conclusion: The application of adhesive systems before self-adhesive cements significantly increased the bond strength to dentin. In group 2, RelyX Unicem associated with the adhesive system Single Bond 2 showed significantly lower mean tensile bond strengths than group 3 (BiFix SE associated with the etch-and-rinse Solobond M adhesive system).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To evaluate the microtensile bond strength (mu TBS) of one-(Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n = 10). The restored teeth were stored in distilled water at 37 C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm(2) cross-sectional area, which were subjected to mu TBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The mu TBS data in MPa were subjected to three-way analysis of variance and Tukey's test (alpha = 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, p < 0.001). All eight experimental means (MPa) were compared by the Tukey's test (p < 0.05) and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4 +/- 7.3); Tyrian-One Step Plus /Variolink II/24 h (39.4 +/- 11.6); Xeno III/C&B/24 h (40.3 +/- 12.9); Xeno III/Variolink II/24 h (25.8 +/- 10.5); Tyrian-One Step Plus / C&B/90 d (22.1 +/- 12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2 +/- 14.2); Xeno III/C&B/90 d (27.0 +/- 13.5); Xeno III/Variolink II/90 d (33.0 +/- 8.9). Conclusions: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.