848 resultados para Microstructured optical fibers
Resumo:
We report the fabrication and characterization of the first guiding chalcogenide As(2)S(3) microstructured optical fibers (MOFs) with a suspended core. At 1.55 mu m, the measured losses are approximately 0.7 dB/m or 0.35 dB/m according to the MOF core size. The fibers have been designed to present a zero dispersion wavelength (ZDW) around 2 mu m. By pumping the fibers at 1.55 mu m, strong spectral broadenings are obtained in both 1.8 and 45-m-long fibers by using a picosecond fiber laser. (C) 2010 Optical Society of America
Resumo:
We report on the thermal characteristics of Bragg gratings fabricated in polymer optical fibers. We have observed a permanent shift in the grating wavelength at room temperature which occurs when the grating has been heated above a threshold temperature. This threshold temperature is dependent on the thermal history of the grating, and we attribute the effect to a shrinking of the fiber. This effect can be avoided by annealing the fiber before grating inscription, resulting in a linear response with temperature and an increased linear operating temperature range of the grating.
Resumo:
We report on the thermal characteristics or Bragg gratings fabricated in polymer optical fibers. We have observed a permanent shift in the grating wavelength at room temperature which occurs when the grating has been heated above a threshold temperature. This threshold temperature is dependent on the thermal history of the grating, and we attribute the effect to a shrinking of the fiber. This effect can be avoided by annealing the fiber before grating inscription, resulting in a linear response with temperature and an increased linear operating temperature range of the grating. © 2007 Optical Society of America.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Reported are observations and measurements of the inscription of fibre Bragg gratings in two different types of microstructured polymer optical fibre: few-moded and endlessly single mode. Contrary to FBG inscription in silica microstructured fibre, where high energy laser pulses are a prerequisite, we have successfully used a low power CW laser source operating at 325nm to produce 1-cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed.
Resumo:
We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. © 2005 Optical Society of America.
Resumo:
The mechanical strength and failure behavior of conventional and microstructured silica optical fibers was investigated using a tensile test and fracture mechanics and numerical analyses. The effect of polymer coating on failure behavior was also studied. The results indicate that all these fibers fail in a brittle manner and failure normally starts from fiber surfaces. The failure loads observed in coated fibers are higher than those in bare fibers. The introduction of air holes reduces fiber strength and their geometrical arrangements have a remarkable effect on stress distribution in the longitudinal direction. These results are potentially useful for the design, fabrication and evaluation of optical fibers for a wide range of applications.
Resumo:
Liquid-filled microstructured polymer optical fibers (MPOFs) as monolithic liquid-core array fiber are proposed and prepared by injecting high-refractive-index liquid into the holes array of the MPOFs. One example for potential applications is demonstrated as a new kind of coherent imaging fiber. It provides great potential for applications in chemical sensing, biosensors, and endoscopy, particularly in bifunctional detection. (C) 2009 Optical Society of America
Resumo:
In this article, we report an optical fluoride probe based on microstructured polymer optical fibers (MPOFs) which is modified with morin-Al complex doped silica gel film. This probe is fabricated by sol-gel fluxion coating process. Sol solution doped with morin-Al is directly inhaled into array holes of MPOF and then forms morin-Al-gel matrix film in them. The sensing probe shows different fluorescence intensity to different fluoride ion concentrations in the aqueous solution. The range of response is 550 mmol/L, under the condition of pH 4.6. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the supercontinuum (SC) generation in a suspended-core As2S3 chalcogenide microstructured optical fiber (MOF). The variation of SC is investigated by changing the fiber length, pump peak power and pump wavelength. In the case of long fibers (20 and 40 cm), the SC ranges are discontinuous and stop at the wavelengths shorter than 3500 nm, due to the absorption of fiber. In the case of short fibers (1.3 and 2.4 cm), the SC ranges are continuous and can extend to the wavelengths longer than 4 μm. The SC broadening is observed when the pump peak power increases from 0.24 to 1.32 kW at 2500 nm. The SC range increases with the pump wavelength changing from 2200 to 2600 nm, corresponding to the dispersion of As2S3 MOF from the normal to anomalous region. The SC generation is simulated by the generalized nonlinear Schrödinger equation. The simulation includes the SC difference between 1.3 and 2.4 cm long fiber by 2500 nm pumping, the variation of SC with pump peak power in 2.4 cm long fiber, and the variation of SC with pump wavelength in 1.3 cm long fiber. The simulation agrees well with the experiment.
Resumo:
In this paper we investigate the effects of viscoelasticity on both the strength and resonance wavelength of two fibre Bragg gratings (FBGs) inscribed in microstructured polymer optical fibre (mPOF) made of undoped PMMA. Both FBGs were inscribed under a strain of 1% in order to increase the material photosensitivity. After the inscription the strain was released and the FBGs spectra were monitored. We initially observed a decrease of the reflection down to zero after which it began to increase. After that, strain tests were carried out to confirm the results and finally the gratings were monitored for a further 120 days, with a stable reflection response being observed beyond 50 days.
Resumo:
The effect of Raman scattering on co-propagation of two short optical pulses is considered. The intra pulse Raman scattering causes the self-frequency shift of each pulse. The effect of the inter pulse Raman scattering is to enhance the frequency shift while the stimulated Raman scattering (SRS) term suppresses (enhances) the frequency shift if the center frequency difference between the optical pulses falls to the right (left) of the Raman gain peak. An expression for the frequency shift as a function of the propagation distance is obtained.
Resumo:
An erratum is presented to correct the propagation loss of the freestanding optical fibers fabricated in glass chip. (c) 2006 Optical Society of America.
Resumo:
Microstructure optical fibers with flat-top fundamental mode are first proposed by introducing a low-index inner core into the core of index-guiding microstructure optical fibers. The design guidelines and characteristics of beam-shaping microstructure optical fibers are demonstrated. The interrelationships of inner-core index with laser wavelength, air hole diameter and size of inner core are investigated. The influence of the relative size of inner core on the spatial profile of the fundamental mode is demonstrated. Moreover, sensitivity of the flat-top fundamental mode profile from the slight change of the optimum inner-core index value is studied. Starting from these results we deduce that it is possible to fabricate beam-shaping microstructure fibers with nowadays technique. (C) 2005 Elsevier B.V. All rights reserved.