935 resultados para Microstructure evolution
Resumo:
The microstructure evolution and mechanical behavior during large strain of a 0.16%C-Mn steel has been investigated by warm torsion tests. These experiments were carried out at 685°C at equivalent strain rate of 0.1 s . The initial microstructure composed of a martensite matrix with uniformly dispersed fine cementite particles was attained by quenching and tempering. The microstructure evolution during tempering and straining was performed through interrupted tests. As the material was reheated to testing temperature, well-defined cell structure was created and subgrains within lath martensite were observed by TEM; strong recovery took place, decreasing the dislocation density. After 1 hour at the test temperature and without straining, EBSD technique showed the formation of new grains. The flow stress curves measured had a peculiar shape: rapid work hardening to a hump, followed by an extensive flow-softening region. 65% of the boundaries observed in the sample strained to ε = 1.0 were high angle grain boundaries. After straining to ε = 5.0, average ferrite grain size close to 1.5 μm was found, suggesting that dynamic recrystallization took place. Also, two sets of cementite particles were observed: large particles aligned with straining direction and smaller particles more uniformly dispersed. The fragmentation or grain subdivision that occurred during reheating and tempering time was essential for the formation of ultrafine grained microstructure.
Resumo:
Die Arbeit beschäftigt sich mit der Kontrolle von Selbstorganisation und Mikrostruktur von organischen Halbleitern und deren Einsatz in OFETs. In Kapiteln 3, 4 und 5 eine neue Lösungsmittel-basierte Verabeitungsmethode, genannt als Lösungsmitteldampfdiffusion, ist konzipiert, um die Selbstorganisation von Halbleitermolekülen auf der Oberfläche zu steuern. Diese Methode als wirkungsvolles Werkzeug erlaubt eine genaue Kontrolle über die Mikrostruktur, wie in Kapitel 3 am Beispiel einer D-A Dyad bestehend aus Hexa-peri-hexabenzocoronene (HBC) als Donor und Perylene Diimide (PDI) als Akzeptor beweisen. Die Kombination aus Oberflächenmodifikation und Lösungsmitteldampf kann die Entnetzungseffekte ausgleichen, so dass die gewüschte Mikrostruktur und molekulare Organisation auf der Oberfläche erreicht werden kann. In Kapiteln 4 und 5 wurde diese Methode eingesetzt, um die Selbstorganisation von Dithieno[2, 3-d;2’, 3’-d’] benzo[1,2-b;4,5-b’]dithiophene (DTBDT) und Cyclopentadithiophene -benzothiadiazole copolymer (CDT-BTZ) Copolymer zu steuern. Die Ergebnisse könnten weitere Studien stimulieren und werfen Licht aus andere leistungsfaähige konjugierte Polymere. rnIn Kapiteln 6 und 7 Monolagen und deren anschlieβende Mikrostruktur von zwei konjugierten Polymeren, Poly (2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) PBTTT und Poly{[N,N ′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis (dicarboximide)-2,6-diyl]-alt-5,5′- (2,2′-bithiophene)}, P(NDI2OD-T2)) wurden auf steife Oberflächen mittels Tauchbeschichtung aufgebracht. Da sist das erste Mal, dass es gelungen ist, Polymer Monolagen aus der Lösung aufzubringen. Dieser Ansatz kann weiter auf eine breite Reihe von anderen konjugierten Polymeren ausgeweitet werden.rnIn Kapitel 8 wurden PDI-CN2 Filme erfolgreich von Monolagen zu Bi- und Tri-Schichten auf Oberflächen aufgebracht, die unterschiedliche Rauigkeiten besitzen. Für das erste Mal, wurde der Einfluss der Rauigkeit auf Lösungsmittel-verarbeitete dünne Schichten klar beschrieben.rn
Resumo:
Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl2 and Cu9Al4 phases formed in the milling process, and the amount of CuAl2 phase increased while the Cu9Al4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al7Cu2Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Extrusion is a process used to form long products of constant cross section, from simple billets, with a high variety of shapes. Aluminum alloys are the materials most processed in the extrusion industry due to their deformability and the wide field of applications that range from buildings to aerospace and from design to automotive industries. The diverse applications imply different requirements that can be fulfilled by the wide range of alloys and treatments, that is from critical structural application to high quality surface and aesthetical aspect. Whether one or the other is the critical aspect, they both depend directly from microstructure. The extrusion process is moreover marked by high deformations and complex strain gradients making difficult the control of microstructure evolution that is at present not yet fully achieved. Nevertheless the evolution of Finite Element modeling has reached a maturity and can therefore start to be used as a tool for investigation and prediction of microstructure evolution. This thesis will analyze and model the evolution of microstructure throughout the entire extrusion process for 6XXX series aluminum alloys. Core phase of the work was the development of specific tests to investigate the microstructure evolution and validate the model implemented in a commercial FE code. Along with it two essential activities were carried out for a correct calibration of the model beyond the simple research of contour parameters, thus leading to the understanding and control of both code and process. In this direction activities were also conducted on building critical knowhow on the interpretation of microstructure and extrusion phenomena. It is believed, in fact, that the sole analysis of the microstructure evolution regardless of its relevance in the technological aspects of the process would be of little use for the industry as well as ineffective for the interpretation of the results.
Resumo:
Physico-chemical and organoleptic characteristics of food depend largely on the microscopic level distribution of gases and water, and connectivity and mobility through the pores. Microstructural characterization of food can be accomplished by Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Spectroscopy (NMR) combined with the application of methods of dissemination and multidimensional relaxometry. In this work, funded by the EC Project InsideFood, several artificial food models, based on foams and gels were studied using MRI and 2D relaxometry. Two different kinds of foams were used: a sugarless and a sugar foam. Then, a half of a syringe was filled with the sugarless foam and the other half with the sugar foam. Then, MRI and NMR experiments were performed and the sample evolution was observed along 3 days in order to quantify macrostructural changes through proton density images and microstructural ones using T1T2 maps, using an inversion CPMG sequence. On the proton density images it may be seen that after 16 hours it was possible to differentiate the macrostructural changes, as the apparition of free water due to a syneresis phenomenon. On the interface it can be seen a brighter area after 16 hours, due to the occurrence of free water. Moreover, thanks to the bidimensional relaxometry (T1-T2) it was possible to differentiate among microscopic changes. Differences between the pores size can be observed as well as the microstructure evolution after 30.5 hours, as a consequence differences are shown on free water redistribution through larger pores and capillarity phenomena between both foams.
Resumo:
Different as-cast microstructures of an AlSi7Mg alloy were produced by controlling the solidification conditions. The as-cast grain size ranged from 1.4 mm to 160 mum and the morphology varied from dendritic to rosette-like to globular. The as-cast materials were then partially remelted and isothermally held at 580degreesC for microstructure evolution. The final microstructure depended on the initial as-cast microstructure and the isothermal holding time. After partial remelting and isothermal holding, coarse-grained dendritic structures were not able to evolve to a globular structure, while structures with medium sized dendritic grains evolved to a globular structure with a relatively large particle size after a long isothermal holding time. Fine-grained structures evolved to well-rounded globular grains within times ranging front 10 min to 5 min as the dendritic nature of the starting structure diminished. An empirical equation has been established to describe the relationship between the evolved microstructure and the as-cast microstructure. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Activated slag cement (ASC) shows significantly higher shrinkage than ordinary Portland cement agglomerates. Cracking generated by shrinkage is one of the most critical drawbacks for broader applications of this promising alternative binder. This article investigates the relationship between ASC hydration, unrestrained drying and autogenous shrinkage of mortar specimens. The chemical and microstructure evolution due to hydration were determined on pastes by thermogravimetric analysis, conduction calorimetry and mercury porosimetry. Samples were prepared with ground blast furnace slag (BFS) activated with sodium silicate (silica modulus of 1.7) with 2.5, 3.5 and 4.5% of Na2O, by slag mass. The amount of activator is the primary influence on drying and autogenous shrinkage, and early hydration makes a considerable contribution to the total result, which increases with the amount of silica. Drying shrinkage occurred in two stages, the first caused by extensive water loss when the samples were exposed to the environment, and the second was associated with the hydration process and less water loss. Due to the refinement of ASC porous system, autogenous shrinkage is responsible for a significant amount of the total shrinkage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
AlSi7Mg0.35 alloy was cast into permanent moulds using different pouring temperatures (725 to 625degreesC). As the pouring temperature decreased, the as-cast microstructure changed from a coarse dendritic structure, through fine equiaxed grains to fine rosette-like grains. The as-cast materials were then partially remelted and isothermally held at 580degreesC prior to semisolid casting into a stepped die. The feedstock material cast from a high temperature filled only half the die, with severe segregation and other defects. The low-temperature-poured material completely filled the die with negligible porosity. The quality of semisolid castings is significantly affected by the microstructure of the semisolid feedstock material that arises from a combination of as-cast and subsequent thermal treatment conditions. The paper describes (a) the influence of pouring temperature on the microstructure of feedstock; (b) microstructure evolution through remelting and (c) the quality of semisolid castings produced with this material. For A17Si0.35Mg alloy, low temperature pouring in the range of 625-650degreesC followed by suitable isothermal holding treatment can result in good quality semisolid casting.
Resumo:
Construction and Building Materials 49 (2013), 315-327
Resumo:
Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Surface properties play an important role in understanding and controlling nanocrystalline materials. The accumulation of dopants on the surface, caused by surface segregation, can therefore significantly affect nanomaterials properties at low doping levels, offering a way to intentionally control nanoparticles features. In this work, we studied the distribution of chromium ions in SnO2 nanoparticles prepared by a liquid precursor route at moderate temperatures (500 degrees C). The powders were characterized by infrared spectroscopy, X-ray diffraction, (scanning) transmission electron microscopy, Electron Energy Loss Spectroscopy, and Mossbauer spectroscopy. We showed that this synthesis method induces a limited solid solution of chromium into SnO2 and a segregation of chromium to the surface. The s-electron density and symmetry of Sn located on the surface were significantly affected by the doping, while Sn located in the bulk remained unchanged. Chromium ions located on the surface and in the bulk showed distinct oxidation states, giving rise to the intense violet color of the nanoparticles suitable for pigment application.
Resumo:
Las transformaciones martensíticas (MT) se definen como un cambio en la estructura del cristal para formar una fase coherente o estructuras de dominio multivariante, a partir de la fase inicial con la misma composición, debido a pequeños intercambios o movimientos atómicos cooperativos. En el siglo pasado se han descubierto MT en diferentes materiales partiendo desde los aceros hasta las aleaciones con memoria de forma, materiales cerámicos y materiales inteligentes. Todos muestran propiedades destacables como alta resistencia mecánica, memoria de forma, efectos de superelasticidad o funcionalidades ferroicas como la piezoelectricidad, electro y magneto-estricción etc. Varios modelos/teorías se han desarrollado en sinergia con el desarrollo de la física del estado sólido para entender por qué las MT generan microstructuras muy variadas y ricas que muestran propiedades muy interesantes. Entre las teorías mejor aceptadas se encuentra la Teoría Fenomenológica de la Cristalografía Martensítica (PTMC, por sus siglas en inglés) que predice el plano de hábito y las relaciones de orientación entre la austenita y la martensita. La reinterpretación de la teoría PTMC en un entorno de mecánica del continuo (CM-PTMC) explica la formación de los dominios de estructuras multivariantes, mientras que la teoría de Landau con dinámica de inercia desentraña los mecanismos físicos de los precursores y otros comportamientos dinámicos. La dinámica de red cristalina desvela la reducción de la dureza acústica de las ondas de tensión de red que da lugar a transformaciones débiles de primer orden en el desplazamiento. A pesar de las diferencias entre las teorías estáticas y dinámicas dado su origen en diversas ramas de la física (por ejemplo mecánica continua o dinámica de la red cristalina), estas teorías deben estar inherentemente conectadas entre sí y mostrar ciertos elementos en común en una perspectiva unificada de la física. No obstante las conexiones físicas y diferencias entre las teorías/modelos no se han tratado hasta la fecha, aun siendo de importancia crítica para la mejora de modelos de MT y para el desarrollo integrado de modelos de transformaciones acopladas de desplazamiento-difusión. Por lo tanto, esta tesis comenzó con dos objetivos claros. El primero fue encontrar las conexiones físicas y las diferencias entre los modelos de MT mediante un análisis teórico detallado y simulaciones numéricas. El segundo objetivo fue expandir el modelo de Landau para ser capaz de estudiar MT en policristales, en el caso de transformaciones acopladas de desplazamiento-difusión, y en presencia de dislocaciones. Comenzando con un resumen de los antecedente, en este trabajo se presentan las bases físicas de los modelos actuales de MT. Su capacidad para predecir MT se clarifica mediante el ansis teórico y las simulaciones de la evolución microstructural de MT de cúbicoatetragonal y cúbicoatrigonal en 3D. Este análisis revela que el modelo de Landau con representación irreducible de la deformación transformada es equivalente a la teoría CM-PTMC y al modelo de microelasticidad para predecir los rasgos estáticos durante la MT, pero proporciona una mejor interpretación de los comportamientos dinámicos. Sin embargo, las aplicaciones del modelo de Landau en materiales estructurales están limitadas por su complejidad. Por tanto, el primer resultado de esta tesis es el desarrollo del modelo de Landau nolineal con representación irreducible de deformaciones y de la dinámica de inercia para policristales. La simulación demuestra que el modelo propuesto es consistente fcamente con el CM-PTMC en la descripción estática, y también permite una predicción del diagrama de fases con la clásica forma ’en C’ de los modos de nucleación martensítica activados por la combinación de temperaturas de enfriamiento y las condiciones de tensión aplicada correlacionadas con la transformación de energía de Landau. Posteriomente, el modelo de Landau de MT es integrado con un modelo de transformación de difusión cuantitativa para elucidar la relajación atómica y la difusión de corto alcance de los elementos durante la MT en acero. El modelo de transformaciones de desplazamiento y difusión incluye los efectos de la relajación en borde de grano para la nucleación heterogenea y la evolución espacio-temporal de potenciales de difusión y movilidades químicas mediante el acoplamiento de herramientas de cálculo y bases de datos termo-cinéticos de tipo CALPHAD. El modelo se aplica para estudiar la evolución microstructural de aceros al carbono policristalinos procesados por enfriamiento y partición (Q&P) en 2D. La microstructura y la composición obtenida mediante la simulación se comparan con los datos experimentales disponibles. Los resultados muestran el importante papel jugado por las diferencias en movilidad de difusión entre la fase austenita y martensita en la distibución de carbono en las aceros. Finalmente, un modelo multi-campo es propuesto mediante la incorporación del modelo de dislocación en grano-grueso al modelo desarrollado de Landau para incluir las diferencias morfológicas entre aceros y aleaciones con memoria de forma con la misma ruptura de simetría. La nucleación de dislocaciones, la formación de la martensita ’butterfly’, y la redistribución del carbono después del revenido son bien representadas en las simulaciones 2D del estudio de la evolución de la microstructura en aceros representativos. Con dicha simulación demostramos que incluyendo las dislocaciones obtenemos para dichos aceros, una buena comparación frente a los datos experimentales de la morfología de los bordes de macla, la existencia de austenita retenida dentro de la martensita, etc. Por tanto, basado en un modelo integral y en el desarrollo de códigos durante esta tesis, se ha creado una herramienta de modelización multiescala y multi-campo. Dicha herramienta acopla la termodinámica y la mecánica del continuo en la macroescala con la cinética de difusión y los modelos de campo de fase/Landau en la mesoescala, y también incluye los principios de la cristalografía y de la dinámica de red cristalina en la microescala. ABSTRACT Martensitic transformation (MT), in a narrow sense, is defined as the change of the crystal structure to form a coherent phase, or multi-variant domain structures out from a parent phase with the same composition, by small shuffles or co-operative movements of atoms. Over the past century, MTs have been discovered in different materials from steels to shape memory alloys, ceramics, and smart materials. They lead to remarkable properties such as high strength, shape memory/superelasticity effects or ferroic functionalities including piezoelectricity, electro- and magneto-striction, etc. Various theories/models have been developed, in synergy with development of solid state physics, to understand why MT can generate these rich microstructures and give rise to intriguing properties. Among the well-established theories, the Phenomenological Theory of Martensitic Crystallography (PTMC) is able to predict the habit plane and the orientation relationship between austenite and martensite. The re-interpretation of the PTMC theory within a continuum mechanics framework (CM-PTMC) explains the formation of the multivariant domain structures, while the Landau theory with inertial dynamics unravels the physical origins of precursors and other dynamic behaviors. The crystal lattice dynamics unveils the acoustic softening of the lattice strain waves leading to the weak first-order displacive transformation, etc. Though differing in statics or dynamics due to their origins in different branches of physics (e.g. continuum mechanics or crystal lattice dynamics), these theories should be inherently connected with each other and show certain elements in common within a unified perspective of physics. However, the physical connections and distinctions among the theories/models have not been addressed yet, although they are critical to further improving the models of MTs and to develop integrated models for more complex displacivediffusive coupled transformations. Therefore, this thesis started with two objectives. The first one was to reveal the physical connections and distinctions among the models of MT by means of detailed theoretical analyses and numerical simulations. The second objective was to expand the Landau model to be able to study MTs in polycrystals, in the case of displacive-diffusive coupled transformations, and in the presence of the dislocations. Starting with a comprehensive review, the physical kernels of the current models of MTs are presented. Their ability to predict MTs is clarified by means of theoretical analyses and simulations of the microstructure evolution of cubic-to-tetragonal and cubic-to-trigonal MTs in 3D. This analysis reveals that the Landau model with irreducible representation of the transformed strain is equivalent to the CM-PTMC theory and microelasticity model to predict the static features during MTs but provides better interpretation of the dynamic behaviors. However, the applications of the Landau model in structural materials are limited due its the complexity. Thus, the first result of this thesis is the development of a nonlinear Landau model with irreducible representation of strains and the inertial dynamics for polycrystals. The simulation demonstrates that the updated model is physically consistent with the CM-PTMC in statics, and also permits a prediction of a classical ’C shaped’ phase diagram of martensitic nucleation modes activated by the combination of quenching temperature and applied stress conditions interplaying with Landau transformation energy. Next, the Landau model of MT is further integrated with a quantitative diffusional transformation model to elucidate atomic relaxation and short range diffusion of elements during the MT in steel. The model for displacive-diffusive transformations includes the effects of grain boundary relaxation for heterogeneous nucleation and the spatio-temporal evolution of diffusion potentials and chemical mobility by means of coupling with a CALPHAD-type thermo-kinetic calculation engine and database. The model is applied to study for the microstructure evolution of polycrystalline carbon steels processed by the Quenching and Partitioning (Q&P) process in 2D. The simulated mixed microstructure and composition distribution are compared with available experimental data. The results show that the important role played by the differences in diffusion mobility between austenite and martensite to the partitioning in carbon steels. Finally, a multi-field model is proposed by incorporating the coarse-grained dislocation model to the developed Landau model to account for the morphological difference between steels and shape memory alloys with same symmetry breaking. The dislocation nucleation, the formation of the ’butterfly’ martensite, and the redistribution of carbon after tempering are well represented in the 2D simulations for the microstructure evolution of the representative steels. With the simulation, we demonstrate that the dislocations account for the experimental observation of rough twin boundaries, retained austenite within martensite, etc. in steels. Thus, based on the integrated model and the in-house codes developed in thesis, a preliminary multi-field, multiscale modeling tool is built up. The new tool couples thermodynamics and continuum mechanics at the macroscale with diffusion kinetics and phase field/Landau model at the mesoscale, and also includes the essentials of crystallography and crystal lattice dynamics at microscale.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.