946 resultados para Microscopy of materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heusler intermetallics Mn$_{2}Y$Ga and $X_{2}$MnGa ($X,Y$=Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials and design future ones.rnrnSynchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specific information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange.rnrnFundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. rnrnChapters include an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of $X_2$MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn$_{2}Y$Ga to the logical Mn$_3$Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a “Think Tank” for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co$_2$FeSi (Appendix B).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a var ...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent NASA program to collect stratospheric dust particles using high-flying WB57 aircraft has made available many more potential candidates for the study of extraterrestrial materials. This preliminary report provides an interpretation of the types of particles returned from one flag (W7017) collected in August, 1981 using a subset of 81 allocated particles. This particular collection period is after the Mt. St. Helen's eruptions. Therefore, the flag may contain significant quantities of volcanic debris in addition to the expected terrestrial contaminants [1]. All particles were mounted on nucleopore filters and have been examined using a modified JEOL100CX analytical electron microscope. For most of the particles, X-ray energy dispersive spectra and images were obtained at 40kV on samples which have not received any conductive coating. However, in order to improve resolution (to ~30A) some images are recorded at 100kV. In addition, 16 samples have been coated with a thin layer (<50A) of Au/Pd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray synchrotron radiation was used to study the nanostructure of cellulose in Norway spruce stem wood and powders of cobalt nanoparticles in cellulose support. Furthermore, the growth of metallic clusters was modelled and simulated in the mesoscopic size scale. Norway spruce was characterized with x-ray microanalysis at beamline ID18F of the European Synchrotron Radiation Facility in Grenoble. The average dimensions and the orientation of cellulose crystallites was determined using x-ray microdiffraction. In addition, the nutrient element content was determined using x-ray fluorescence spectroscopy. Diffraction patterns and fluorescence spectra were simultaneously acquired. Cobalt nanoparticles in cellulose support were characterized with x-ray absorption spectroscopy at beamline X1 of the Deutsches Elektronen-Synchrotron in Hamburg, complemented by home lab experiments including x-ray diffraction, electron microscopy and measurement of magnetic properties with a vibrating sample magnetometer. Extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray diffraction were used to solve the atomic arrangement of the cobalt nanoparticles. Scanning- and transmission electron microscopy were used to image the surfaces of the cellulose fibrils, where the growth of nanoparticles takes place. The EXAFS experiment was complemented by computational coordination number calculations on ideal spherical nanocrystals. The growth process of metallic nanoclusters on cellulose matrix is assumed to be rather complicated, affected not only by the properties of the clusters themselves, but essentially depending on the cluster-fiber interfaces as well as the morphology of the fiber surfaces. The final favored average size for nanoclusters, if such exists, is most probably a consequence of these two competing tendencies towards size selection, one governed by pore sizes, the other by the cluster properties. In this thesis, a mesoscopic model for the growth of metallic nanoclusters on porous cellulose fiber (or inorganic) surfaces is developed. The first step in modelling was to evaluate the special case of how the growth proceeds on flat or wedged surfaces.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ag-Ni films were electrodeposited over a Cu substrate. Structural characterization revealed a fibrous microstructure with an amorphous structure for the as-deposited film. Isothermal annealing at 400 degrees C of the film inside transmission electron microscope led to amorphous-to-crystalline transition along with the evolution of nano-sized particles in the microstructure. The crystalline phase was Ni-Ag solid solution. The relative volume fraction of the nano-sized particles increased gradually with time. There was however no detectable decomposition of solid solution phase till about 4 h of annealing. Beyond 4 h phase separation initiated and pure Ag and Ni phases formed in the film. This study provides a methodology by which microstructural engineering of as-electrodeposited amorphous Ag-Ni films can be conducted to isolate a particular microstructure in order to tap specific potentially usable functionalities. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brief overview of our group research activities is given and the concept of donor acceptor is described for the development of conjugated polymers for optoelectronic devices. In particular, a new family of conjugated polymers based on dithienopyrrole has been synthesized to demonstrate the concept of donor-acceptor. The dithienopyrrole was coupled to benzodithiophene via Stille coupling to obtain two low band gap polymers P5a and P5b having -C18H37 and -2-ethylhexyl alkyl chain respectively. Both the polymers exhibit absorption within the solar spectrum with an optical band gap below 2 eV. Atomic force microscopy revealed that both the polymers form smooth film with roughness of 2.4 nm and photoluminescence measurement of polymer/fullerene derivative blend film suggests effective dissociation of exciton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides information about an electrodeposition based two-step synthesis methodology for producing core-shell Ag-(Ni-O) nanowires and their detailed structural and compositional characterization using electron microscopy technique. Nanowires were produced by employing anodic alumina templates with a pore diameter of 200 nm. In the first step of the synthesis process, nanocrystalline Ni-O was electrodeposited in a controlled manner such that it heterogeneously nucleated and grew only on the template pore walls without filling the pores from bottom upwards. This alumina template with pore walls coated with Ni-O was then utilized as a template during the electrodeposition of Ag in the second step. Electrodeposited Ag filled the template pores to finally produce Ag-(Ni-O) core-shell nanowires with an overall diameter of 200 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrodeposition based methodology for synthesizing Ni-Cr-Fe nanowires is provided. As-synthesized nanowires were 200 nm in diameter and more than 5 mu m in length. Detailed characterization of the nanowires using electron microscopy technique revealed an amorphous microstructure for the nanowires with uniform distribution of Ni, Fe and Cr atoms. Annealing of the nanowire using the electron beam inside electron microscope resulted in gradual crystallization of amorphous microstructure into a nanocrystalline one which illustrated the potential for microstructural engineering of the nanowires. (C) 2014 The Electrochemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work provides a methodology for synthesizing isolated multi-component, high entropy alloy nanoparticles. Wet chemical synthesis technique was used to synthesis NiFeCrCuCo nanoparticles. As synthesized nanoparticles were spherical with an average size of 26.7 +/- 3.3 nm. Average composition of the as-synthesized nanoparticle dispersion was 26 +/- 2 at% Cr, 14 +/- 2 at% Fe, 10 +/- 0.6 at% Co, 25 +/- 0.1 at% Ni and 25 +/- 1.1 at% Cu. Compositional analysis of the nanoparticles conducted using the compositional line profile analysis and compositional mapping on a single nanoparticle level revealed a fairly uniform distribution of all the five component elements within the nanoparticle volume. Electron diffraction analysis clearly revealed that the structure of as-synthesized nanoparticles was face centered cubic. (C) 2015 Elsevier B.V. All rights reserved.