334 resultados para Micronutrient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Uganda, vitamin A deficiency (VAD) and iron deficiency anaemia (IDA) are major public health problems with between 15-32% of children under 5 years of age showing VAD and 73% being anaemic. This is largely due to the fact that the staple food crop of the country, banana, is low in pro-vitamin A and iron, therefore leading to dietary deficiencies. Although worldwide progress has been made to control VAD and IDA through supplementation, food fortification and diet diversification, their long term sustainability and impact in developing countries such as Uganda is limited. The approach taken by researchers at Queensland University of Technology (QUT), Australia, in collaboration with the National Agricultural Research Organization (NARO), Uganda, to address this problem, is to generate consumer acceptable banana varieties with significantly increased levels of pro-vitamin A and iron in the fruit using genetic engineering techniques. Such an approach requires the use of suitable, well characterised genes and promoters for targeted transgene expression. Recently, a new banana phytoene synthase gene (APsy2a) involved in the synthesis of pro-vitamin A (pVA) carotenoids was isolated from a high â-carotene banana (F’ei cv Asupina). In addition, sequences of banana ferritin, an iron storage protein, have been isolated from Cavendish banana. The aim of the research described in this thesis was to evaluate the function of these genes to assess their suitability for the biofortification of banana fruit. In addition, a range of banana-derived promoters were characterised to determine their suitability for controlling the expression of transgenes in banana fruit. Due to the time constraints involved with generating transgenic banana fruit, rice was used as the model crop to investigate the functionality of the banana-derived APsy2a and ferritin genes. Using Agrobacterium-mediated transformation, rice callus was transformed with APsy2a +/- the bacterial-derived carotene desaturase gene (CrtI) each under the control of the constitutive maize poly-ubiquitin promoter (ZmUbi) or seed-specific rice glutelin1 (Gt1) promoter. The maize phytoene synthase (ZmPsy1) gene was included as a control. On selective media, with the exception of ZmUbi-CrtI-transgenic callus, all antibiotic resistant callus displayed a yellow-orange colour from which the presence of â-carotene was demonstrated using Raman spectroscopy. Although the regeneration of plants from yellow-orange callus was difficult, 16 transgenic plants were obtained and characterised from callus transformed with ZmUbi-APys2a alone. At least 50% of the T1 seeds developed a yellow-orange coloured callus which was found to contain levels of â-carotene ranging from 4.6-fold to 72-fold higher than that in non-transgenic rice callus. Using the seed-specific Gt1 promoter, 38 transgenic rice plants were generated from APsy2a-CrtI-transformed callus while 32 plants were regenerated from ZmPsy1-CrtI-transformed callus. However, when analysed for presence of transgene by PCR, all transgenic plants contained the APsy2a, ZmPsy1 or CrtI transgene, with none of the plants found to be co-transformed. Using Raman spectroscopy, no â-carotene was detected in-situ in representative T1 seeds. To investigate the potential of the banana-derived ferritin gene (BanFer1) to enhance iron content, rice callus was transformed with constitutively expressed BanFer1 using the soybean ferritin gene (SoyFer) as a control. A total of 12 and 11 callus lines independently transformed with BanFer1 and SoyFer, respectively, were multiplied and transgene expression was verified by RT-PCR. Pearl’s Prussian blue staining for in-situ detection of ferric iron showed a stronger blue colour in rice callus transformed with BanFer1 compared to SoyFer. Using flame atomic absorption spectrometry, the highest mean amount of iron quantified in callus transformed with BanFer1 was 30-fold while that obtained using the SoyFer was 14-fold higher than the controls. In addition, ~78% of BanFer1-transgenic callus lines and ~27% of SoyFer-transgenic callus lines had significantly higher iron content than the non-transformed controls. Since the genes used for enhancing micronutrient content need to be expressed in banana fruit, the activity of a range of banana-derived, potentially fruit-active promoters in banana was investigated. Using uidA (GUS) as a reporter gene, the function of the Expansin1 (MaExp1), Expansin1 containing the rice actin intron (MaExp1a), Expansin4 (MaExp4), Extensin (MaExt), ACS (MaACS), ACO (MaACO), Metallothionein (MaMT2a) and phytoene synthase (APsy2a) promoters were transiently analysed in intact banana fruit using two transformation methods, particle bombardment and Agrobacterium-mediated infiltration (agro-infiltration). Although a considerable amount of variation in promoter activity was observed both within and between experiments, similar trends were obtained using both transformation methods. The MaExp1 and MaExp1a directed high levels of GUS expression in banana fruit which were comparable to those observed from the ZmUbi and Banana bunchy top virus-derived BT4 promoters that were included as positive controls. Lower levels of promoter activity were obtained in both methods using the MaACO and MaExt promoters while the MaExp4, MaACS, and APsy2a promoters directed the lowest GUS activity in banana fruit. An attempt was subsequently made to use agro-infiltration to assess the expression of pVA biosynthesis genes in banana fruit by infiltrating fruit with constructs in which the ZmUbi promoter controlled the expression of APsy2a +/- CrtI, and with the maize phytoene synthase gene (ZmPsy1) included as a control. Unfortunately, the large amount of variation and inconsistency observed within and between experiments precluded any meaningful conclusions to be drawn. The final component of this research was to assess the level of promoter activity and specificity in non-target tissue. These analyses were done on leaves obtained from glasshouse-grown banana plants stably transformed with MaExp1, MaACO, APsy2a, BT4 and ZmUbi promoters driving the expression of the GUS gene in addition to leaves from a selection of the same transgenic plants which were growing in a field trial in North Queensland. The results from both histochemical and fluorometric GUS assays showed that the MaExp1 and MaACO promoters directed very low GUS activities in leaves of stably transformed banana plants compared to the constitutive ZmUbi and BT4 promoters. In summary, the results from this research provide evidence that the banana phytoene synthase gene (APsy2a) and the banana ferritin gene (BanFer1) are functional, since the constitutive over-expression of each of these transgenes led to increased levels of pVA carotenoids (for APsy2a) and iron content (for BanFer1) in transgenic rice callus. Further work is now required to determine the functionality of these genes in stably-transformed banana fruit. This research also demonstrated that the MaExp1 and MaACO promoters are fruit-active but have low activity in non-target tissue (leaves), characteristics that make them potentially useful for the biofortification of banana fruit. Ultimately, however, analysis of fruit from field-grown transgenic plants will be required to fully evaluate the suitability of pVA biosynthesis genes and the fruit-active promoters for fruit biofortification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Extracorporeal membrane oxygenation (ECMO) circuits have been shown to sequester circulating blood compounds such as drugs based on their physicochemical properties. This study aimed to describe the disposition of macro- and micronutrients in simulated ECMO circuits. Methods Following baseline sampling, known quantities of macro- and micronutrients were injected post oxygenator into ex vivo ECMO circuits primed with the fresh human whole blood and maintained under standard physiologic conditions. Serial blood samples were then obtained at 1, 30 and 60 min and at 6, 12 and 24 h after the addition of nutrients, to measure the concentrations of study compounds using validated assays. Results Twenty-one samples were tested for thirty-one nutrient compounds. There were significant reductions (p < 0.05) in circuit concentrations of some amino acids [alanine (10%), arginine (95%), cysteine (14%), glutamine (25%) and isoleucine (7%)], vitamins [A (42%) and E (6%)] and glucose (42%) over 24 h. Significant increases in circuit concentrations (p < 0.05) were observed over time for many amino acids, zinc and vitamin C. There were no significant reductions in total proteins, triglycerides, total cholesterol, selenium, copper, manganese and vitamin D concentrations within the ECMO circuit over a 24-h period. No clear correlation could be established between physicochemical properties and circuit behaviour of tested nutrients. Conclusions Significant alterations in macro- and micronutrient concentrations were observed in this single-dose ex vivo circuit study. Most significantly, there is potential for circuit loss of essential amino acid isoleucine and lipid soluble vitamins (A and E) in the ECMO circuit, and the mechanisms for this need further exploration. While the reductions in glucose concentrations and an increase in other macro- and micronutrient concentrations probably reflect cellular metabolism and breakdown, the decrement in arginine and glutamine concentrations may be attributed to their enzymatic conversion to ornithine and glutamate, respectively. While the results are generally reassuring from a macronutrient perspective, prospective studies in clinical subjects are indicated to further evaluate the influence of ECMO circuit on micronutrient concentrations and clinical outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micronutrients play an important role in biological processes for wastewater treatment. Many industrial wastewaters lack in nutrients required for microbial growth, and this is one of the problems at many activated sludge plants treating them. In this study, the effects of the micronutrient niacin on the COD removal rates of textile wastewater, together with the effect of Mixed Liquor Suspended Solids (MLSS) on niacin, were studied. Certain improvement effects were found on the removal rates of COD, when 0.5 similar to 2.0 mg/L niacin was added to the textile wastewater. The optimal concentration of niacin was 1.0 mg/L, which was continuously added during textile wastewater treatment, and removal rates were 1.31 times compared to those of the control system. The concentration of MLSS was probably one of the factors influencing treatment efficiency, and the biological performance of treatment system could be optimized through micronutrient niacin supplements.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the capabilities of laser-induced break down spectroscopy (LIBS) for rapid analysis to multi-component plant are illustrated using a 1064 nm laser focused onto the surface of folium lycii. Based on homogeneous plasma assumption, nine of essential micronutrients in folium lycii are identified. Using Saha equation and Boltzmann plot method electron density and plasma temperature are obtained, and the irrelative concentration (Ca, Mg, Al, Si, Ti, Na, K, Li, and Sr) are obtained employing a semi-quantitative method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate micronutrient intakes and the role of nutritional supplements in the diets of Irish adults aged 18-64 years and pre-school children aged 1-4 years. Analysis is based on data from the National Adult Nutrition Survey (NANS) (n=1274) and the National Pre-School Nutrition Survey (NPNS) (n=500). Food and beverage intakes and nutritional supplement use were recorded using 4-day food records. Nutrients were estimated using WISP© which is based on McCance and Widdowson’s The Composition of Foods, 6thEd and the Irish Food Composition Database. “Meats”, “milk/yoghurt”, “breads”, “fruit/fruit juices” and “breakfast cereals” made important contributions to the intakes of a number of micronutrients. Micronutrient intakes were generally adequate, with the exception of iron (in adult females and 1 year olds) and vitamin D (in all population groups). For iron, zinc, copper and vitamin B6, up to 2% of adults had intakes that exceeded the upper limit (UL). Small proportions of children had intakes of zinc (11%), copper (2%), retinol (4%) and folic acid (5%) exceeding the UL. Nutritional supplements (predominantly multivitamin and/or mineral preparations) were consumed by 28% of adults and 20% of pre-school children. Among users, supplements were effective in reducing the % with inadequate intakes for vitamins A and D (both population groups) and iron (adult females only). Supplement users had a lower prevalence of inadequate intakes for vitamin A and iron compared to non-users. In adults only, users had a lower prevalence of inadequate intakes for magnesium, calcium and zinc, and displayed better compliance with dietary recommendations and lifestyle characteristics compared with non-users. There is poor compliance among women of childbearing age for the recommendation to take a supplement containing 400µg/day of folic acid. These findings are important for the development of nutrition policies and future recommendations for adults and pre-school children in Ireland and the EU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigated the micronutrient intakes of Irish pre-school children (1-4 years) and adults (18-64 years) and the role that fortified foods (FFs) play in the diets of these population groups. Dietary intake data were collected as part of the National Pre-school Nutrition Survey (NPNS) (2010-2011) and the National Adult Nutrition Survey (NANS) (2008-2010) using 4-day food and beverage records. Nutrient intakes were estimated using WISP©, which encompasses McCance and Widdowson’s The Composition of Foods and the Irish Food Composition Database. A FF is one in which one or more micronutrients are added. Key dietary sources of micronutrients in NPNS and NANS were “milk”, “meat & meat products”, “breakfast cereals”, “fruit & fruit juices” and “breads”. In general, intakes of most micronutrients were adequate with the exception of iron (1 year old children and adult women) and vitamin D (in all population groups). Small proportions of the pre-school population had intakes which exceeded the upper level (UL) (zinc: 11%, folic acid: 5%, retinol: 4%, copper: 2%). Less than 2% of adults had intakes of iron, copper, zinc and vitamin B6 which exceeded the UL. FFs were consumed by 97% of pre-school children and 82% of adults, representing 17% and 9% of mean daily energy intake respectively. Relative to energy intake, FFs contributed substantially greater proportions to intakes of key micronutrients, such as iron and vitamin D. FFs were effective in reducing the prevalence of inadequate micronutrient intakes in these population groups, particularly for iron in women and 1 year old children. FFs made a significant contribution to folate intake in women of childbearing age (72µg). FFs contributed greater proportions of carbohydrate and lower proportions of fat to the diets of consumers. Voluntary addition of nutrients to foods did not contribute appreciably to intakes exceeding the UL in these population groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine bow nutrient intake is affected by a short-term phytoestrogen-rich diet. Ten healthy volunteers consumed 100 g soya chunks, 150 g lentils, and 250 g kidney beans daily for 3 days. Urine was collected during the 2 days before, 3 intervention days, and 2 days after the intervention and analyzed for phytoestrogen status. Subjects filled in food diaries throughout the study period. Urinary daidzein, but not equol and enterolactone, levels increased during the 7-day period. There was no change in energy, protein, sugar, or total fat intake, but an increase in carbohydrate, fiber, and starch intake. There was a change in the distribution of fat intake with a fall in saturated fat and cholesterol intake. Iron intake significantly increased, although vitamin B-12 fell significantly. The long-term effects of this diet and the associated health benefits of these changes require further study. (C) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related maculopathy (ARM) is a common clinical entity. The late-stage manifestations of ARM, which are known as age-related macular degeneration (AMD), have devastating consequences for vision. Various risk factors have been identified in the development of the condition, which are consistent with the premise that oxidative stress plays an important role in its pathogenesis. Thus, the possibility that antioxidant balance can be manipulated through diet or supplementation has created much interest. Associations between diet and nutrition and the clinical features of ARM have been described. Scrutiny of the literature shows consistency in the report of notable reductions in serum micronutrients in wet AMD, however, the evidence for causation is still circumstantial. In this comprehensive review of the clinical literature, we have assessed the evidence for a link between diet and nutrition as risk factors for the development of ARM and AMD. All published case control, population-based, and interventional studies on ARM were examined. Although initial support appeared to be moderate and somewhat contradictory, the evidence that lifetime oxidative stress plays an important role in the development of ARM is now compelling. The positive outcomes in the Age-Related Eye Diseases Study, a major controlled clinical trial, have given hope that modulation of the antioxidant balance through supplementation can help prevent progression of ARM to AMD.