34 resultados para Microcracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of microcracks formed in concrete under repeated uniaxial compressive loads are investigated by experiments on prismatic specimens. The distribution and orientation of cracks formed are studied by optical microscopic techniques. The basic failure mechanism of concrete at the phenomenological and internal structural level are examined by the formation and propagation of cracks. The tests have indicated that local tensile failures constitute the dominant mode of fracture, with the bond cracks forming the major percentage of the total magnitude of cracks. Significant differences were observed in the proportion of bond cracks formed under static and repeated load systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports the acoustic emission (AE) study of precursory micro-cracking activity and fracture behaviour of quasi-brittle materials such as concrete and cement mortar. In the present study, notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the accompanying AE were recorded using a 8 channel AE monitoring system. The various AE statistical parameters including AE event rate , AE energy release rate , amplitude distribution for computing the AE based b-value, cumulative energy (I E) pound and ring down count (RDC) were used for the analysis. The results show that the micro-cracks initiated and grew at an early stage in mortar in the pre peak regime. While in the case of concrete, the micro-crack growth occurred during the peak load regime. However, both concrete and mortar showed three distinct stages of micro-cracking activity, namely initiation, stable growth and nucleation prior to the final failure. The AE statistical behavior of each individual stage is dependent on the number and size distribution of micro-cracks. The results obtained in the laboratory are useful to understand the various stages of micro-cracking activity during the fracture process in quasi-brittle materials such as concrete & mortar and extend them for field applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined. The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to understand the influence of ductile metal interlayer on the overall deformation behavior of metal/nitride multilayer, different configurations of metal and nitride layers were deposited and tested under indentation loading. To provide insight into the trends in deformation with multilayer spacings, an FEM model with elastic-perfect plastic metal layers alternate with an elastic nitride on top of an elastic-plastic substrate. The strong strain mismatch between the metal and nitride layers significantly alters the stress field under contact loading leading to micro-cracking in the nitride, large tensile stresses immediately below the contact, and a transition from columnar sliding in thin metal films to a more uniform bending and microcracking in thicker coatings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracks. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracics. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study is focused on improvement of the adhesion properties of the interface between plasma-sprayed coatings and substrates by laser cladding technology (LCT), Within the laser-clad layer there is a gradient distribution in chemical composition and mechanical properties that has been confirmed by SEM observation and microhardness measurement. The residual stress due to mismatches in thermal and mechanical properties between coatings and substrates can be markedly reduced and smoothed out. To examine the changes of microstructure and crack propagation in the coating and interface during loading, the three-point bending test has been carried out in SEM with a loading device. Analysis of the distribution of shear stress near the interface under loading has been made using the FEM code ANSYS, The experimental results show clearly that the interface adhesion can be improved with LCT pretreatment, and the capability of the interface to withstand the shear stress as well as to resist microcracking has been enhanced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the article is to present a unified model for the dynamic mechanical response of ceramics under compressive stress states. The model incorporates three principal deformation mechanisms: (i) lattice plasticity due to dislocation glide or twinning; (ii) microcrack extension; and (iii) granular flow of densely packed comminuted particles. In addition to analytical descriptions of each mechanism, prescriptions are provided for their implementation into a finite element code as well as schemes for mechanism transitions. The utility of the code in addressing issues pertaining to deep penetration is demonstrated through a series of calculations of dynamic cavity expansion in an infinite medium. The results reveal two limiting behavioral regimes, dictated largely by the ratio of the cavity pressure p to the material yield strength σY. At low values of p/σY, cavity expansion occurs by lattice plasticity and hence its rate diminishes with increasing σY. In contrast, at high values, expansion occurs by microcracking followed by granular plasticity and is therefore independent of σY. In the intermediate regime, the cavity expansion rate is governed by the interplay between microcracking and lattice plasticity. That is, when lattice plasticity is activated ahead of the expanding cavity, the stress triaxiality decreases (toward more negative values) which, in turn, reduces the propensity for microcracking and the rate of granular flow. The implications for penetration resistance to high-velocity projectiles are discussed. Finally, the constitutive model is used to simulate the quasi-static and dynamic indentation response of a typical engineering ceramic (alumina) and the results compared to experimental measurements. Some of the pertinent observations are shown to be captured by the present model whereas others require alternative approaches (such as those based on fracture mechanics) for complete characterization. © 2011 The American Ceramic Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study is to assess the capabilities of a recently developed mechanism-based model for inelastic deformation and damage in structural ceramics. In addition to conventional lattice plasticity, the model accounts for microcrack growth and coalescence as well as granular flow following comminution. The assessment is made through a coupled experimental/computational study of the indentation response of a commercial armor ceramic. The experiments include examinations of subsurface damage zones along with measurements of residual surface profiles and residual near-surface stresses. Extensive finite element computations are conducted in parallel. Comparisons between experiment and simulation indicate that the most discriminating metric in the assessment is the spatial extent of subsurface damage following indentation. Residual stresses provide additional validation. In contrast, surface profiles of indents are dictated largely by lattice plasticity and thus provide minimal additional insight into the inelastic deformation resulting from microcracking or granular flow. A satisfactory level of correlation is obtained using property values that are either measured directly or estimated from physically based arguments, without undue reliance on adjustable (nonphysical) parameters. © 2011 The American Ceramic Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the calculated parameters show a maximum value for specimens heat-treated at about 100°C. The tensile strength is, for instance, substantially higher for specimens shock-heated at 100°C than for non-heated ones. Another striking feature is the initial decrease of the diameter observed in specimens heat-treated at 600°C when loaded in uniaxial compression. Both optical microscopy and DSA experiments reveal a large increase in microcracking when the heat-treatment temperature exceeds 300°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an approach to fabricate a disordered optical superlattice using microcracking faces in GaNxAs1-x epilayers. Laser action is observed and the emission exhibits random laser behaviors. A transfer-matrix simulation suggests photon localization occurs at the lasing modes.