997 resultados para Microchip electrophoresis
Resumo:
This article describes an effective microchip protocol based on electrophoretic-separation and electrochemical detection for highly sensitive and rapid measurements of nitrate ester explosives, including ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), propylene glycol dinitrate (PGDN) and glyceryl trinitrate (nitroglycerin, NG). Factors influencing the separation and detection processes were examined and optimized. Under the optimal separation conditions obtained using a 15 mM borate buffer (pH 9.2) containing 20 mM SDS, and applying a separation voltage of 1500 V, the four nitrate ester explosives were separated within less than 3 min. The glassy-carbon amperometric detector (operated at -0.9 V vs. Ag/AgCl) offers convenient cathodic detection down to the picogram level, with detection limits of 0.5 ppm and 0.3 ppm for PGDN and for NG, respectively, along with good repeatability (RSD of 1.8-2.3%; n = 6) and linearity (over the 10-60 ppm range). Such effective microchip operation offers great promise for field screening of nitrate ester explosives and for supporting various counter-terrorism surveillance activities.
Resumo:
In this report, we describe a rapid and reliable process to bond channels fabricated in glass substrates. Glass channels were fabricated by photolithography and wet chemical etching. The resulting channels were bonded against another glass plate containing a 50-mu m thick PDMS layer. This same PDMS layer was also used to provide the electrical insulation of planar electrodes to carry out capacitively coupled contactless conductivity detection. The analytical performance of the proposed device was shown by using both LIF and capacitively coupled contactless conductivity detection systems. Efficiency around 47 000 plates/m was achieved with good chip-to-chip repeatability and satisfactory long-term stability of EOF. The RSD for the EOF measured in three different devices was ca. 7%. For a chip-to-chip comparison, the RSD values for migration time, electrophoretic current and peak area were below 10%. With the proposed approach, a single chip can be fabricated in less than 30 min including patterning, etching and sealing steps. This fabrication process is faster and easier than the thermal bonding process. Besides, the proposed method does not require high temperatures and provides excellent day-to-day and device-to-device repeatability.
Resumo:
Capillary electrophoresis with capacitively coupled contactless conductivity detection was successfully used to quantify N-acetylglucosamine and five N-acetyl-chitooligosaccharides (C2-C6) produced after reaction with a purified chitinase (TmChi) from Tenebrio molitor (Coleoptera). No derivatization process was necessary. The separation was developed using 10 mM NaOH with 10% (v/v) acetonitrile as background electrolyte and homemade equipment with a system that avoids the harmful effect of electrolysis. The limit of detection for all oligosaccharides was ca. 3 mu M, and the results indicated that the larger the oligosaccharide, the higher the sensitivity. Analysis of the chitooligosaccharides produced revealed that TmChi has an endolytic cleavage pattern with C5 as the best substrate (higher catalytic efficiency k(cat)/K-M) releasing C2 and C3. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Fluoroacetate is a highly toxic species naturally found in plants and in commercial products (compound 1080) for population control of several undesirable animal species. However, it is non-selective and toxic to many other animals including humans, and thus its detection is very important for forensic purposes. This paper presents a sensitive and fast method for the determination of fluoroacetate in blood serum using capillary electrophoresis with capacitively coupled contactless conductivity detection. Serum blood samples were treated with ethanol to remove proteins. The samples were analyzed in BGE containing 15 mmol/L histidine and 30 mmol/L gluconic acid (pH 3.85). The calibration curve was linear up to 75 mu mol/L (R(2) = 0.9995 for N = 12). The detection limit in the blood serum was 0.15 mg/kg, which is smaller than the lethal dose for humans and other animals. Fluoride, a metabolite of the fluoroacetate defluorination, could also be detected for levels greater than 20 mu mol/L, when polybrene was used for reversion of the EOF. CTAB and didecyldimethylammonium bromide are not useful for this task because of the severe reduction of the fluoride level. However, no interference was observed for fluoroacetate.
Resumo:
This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 mu m/12 mu m). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall.
Resumo:
A thin-layer electrochemical flow cell coupled to capillary electrophoresis with contactless conductivity detection (EC-CE-(CD)-D-4) was applied for the first time to the derivatization and quantification of neutral species using aliphatic alcohols as model compounds. The simultaneous electrooxidation of four alcohols (ethanol, 1-propanol, 1-butanol, and 1-pentanol) to the corresponding carboxylates was carried out on a platinum working electrode in acid medium. The derivatization step required 1 min at 1.6 V vs. Ag/AgCl under stopped flow conditions, which was preceded by a 10 s activation at 0 V. The solution close to the electrode surface was then hydrodynamically injected into the capillary, and a 2.5 min electrophoretic separation was carried out. The fully automated flow system operated at a frequency of 12 analyses per hour. Simultaneous determination of the four alcohols presented detection limits of about 5 x 10(-5) mol As a practical application with a complex matrix, ethanol concentrations were determined in diluted pale lager beer and in nonalcoholic beer. No statistically significant difference was observed between the EC-CE-(CD)-D-4 and gas chromatography with flame ionization detection (GC-FID) results for these samples. The derivatization efficiency remained constant over several hours of continuous operation with lager beer samples (n = 40).
Resumo:
Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300Vcm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215 000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.
Resumo:
This paper describes a long-range remotely controlled CE system built on an all-terrain vehicle. A four-stroke engine and a set of 12-V batteries were used to provide power to a series of subsystems that include drivers, communication, computers, and a capillary electrophoresis module. This dedicated instrument allows air sampling using a polypropylene porous tube, coupled to a flow system that transports the sample to the inlet of a fused-silica capillary. A hybrid approach was used for the construction of the analytical subsystem combining a conventional fused-silica capillary (used for separation) and a laser machined microfluidic block, made of PMMA. A solid-state cooling approach was also integrated in the CE module to enable controlling the temperature and therefore increasing the useful range of the robot. Although ultimately intended for detection of chemical warfare agents, the proposed system was used to analyze a series of volatile organic acids. As such, the system allowed the separation and detection of formic, acetic, and propionic acids with signal-to-noise ratios of 414, 150, and 115, respectively, after sampling by only 30 s and performing an electrokinetic injection during 2.0 s at 1.0 kV.
Resumo:
The formation and properties of carbonate adducts of some organic hydroxy compounds in aqueous medium were investigated. Fatty alcohols and sugars were chosen as representative classes of biological interest, and the medium was carbonated aqueous solution with pH ranging from 3.0 to 8.3. Capillary electrophoresis with two capacitively coupled contactless conductivity detectors (C4Ds) was used for quantitation and to obtain the mobility of the monoalkyl carbonates (MACs), which were used to determine the equilibrium and kinetic constants of the reaction as well as the diffusion coefficients. For increasing chain length of the alcohols, the equilibrium constant tends to the unit, which suggests that fatty alcohols can form the corresponding MACs. The formation of MACs for cyclohexanol and cyclopentanol also suggest the existence of similar species for sterols. Carbonate adducts of fructose, glucose, and sucrose were also detected, which suggests that these counterparts of the well-known phosphates can also occur in the cytosol. Our calculations suggest that one in 1000 to one in 10 000 molecules of these hydroxy compounds would be available as the corresponding MAC in such a medium. Experiments carried out at pH values less than 3.0 showed that there is a catalytic effect of hydronium on the interconversion of bicarbonate and a MAC. Taking into account the great number of hydroxy compounds similar to the ones investigated and that bicarbonate is ubiquitous in living cells, one can anticipate the existence of a whole new class of carbonate adducts of these metabolites.
Resumo:
The presence of monoethyl carbonate (MEC) in beer and sparkling wine is demonstrated for the first time, as well as the formation of this species in drinks prepared with a distilled beverage and a carbonated soft drink. A capillary electrophoresis (CE) equipment with two capacitively coupled contactless conductivity detector ((CD)-D-4) was used to identify and quantify this species. The concentrations of MEC in samples of lager beer and rum and cola drink were, respectively, 1.2 and 4.1 mmol/l, which agree with the levels of ethanol and CO2 available in these products. Previous results about the kinetics of the reaction suggest that only a small amount of MEC should be formed after the ingredients of a drink are mixed. However, in all three cases (whisky and club soda: rum with cola; gin and tonic water), MEC was quickly formed, which was attributed to the low pH of the drinks. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.
Resumo:
In this report, we describe the microfabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner (PT) electrophoresis microchips using toner masks. Planar electrodes were fabricated by three simple steps: (i) drawing and laser-printing the electrode geometry on polyester films, (ii) sputtering deposition onto substrates, and (iii) removal of toner layer by a lift-off process. The polyester film with anchored electrodes was integrated to PT electrophoresis microchannels by lamination at 120 degrees C in less than 1 min. The electrodes were designed in an antiparallel configuration with 750 mu m width and 750 gm gap between them. The best results were recorded with a frequency of 400 kHz and 10 V-PP using a sinusoidal wave. The analytical performance of the proposed microchip was evaluated by electrophoretic separation of potassium, sodium and lithium in 150 mu m wide x 6 mu m deep microchannels. Under an electric field of 250 V/cm the analytes were successfully separated in less than 90 s with efficiencies ranging from 7000 to 13 000 plates. The detection limits (S/N = 3) found for K+, Na+, and Li+ were 3.1, 4.3, and 7.2 mu mol/L, respectively. Besides the low-cost and instrumental simplicity, the integrated PT chip eliminates the problem of manual alignment and gluing of the electrodes, permitting more robustness and better reproducibility, therefore, more suitable for mass production of electrophoresis microchips.
Resumo:
A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with similar to 270 mu m, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 mu L of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/mu L., (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of lambda-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.
Resumo:
Our dynamic capillary electrophoresis model which uses material specific input data for estimation of electroosmosis was applied to investigate fundamental aspects of isoelectric focusing (IEF) in capillaries or microchannels made from bare fused-silica (FS), FS coated with a sulfonated polymer, polymethylmethacrylate (PMMA) and poly(dimethylsiloxane) (PDMS). Input data were generated via determination of the electroosmotic flow (EOF) using buffers with varying pH and ionic strength. Two models are distinguished, one that neglects changes of ionic strength and one that includes the dependence between electroosmotic mobility and ionic strength. For each configuration, the models provide insight into the magnitude and dynamics of electroosmosis. The contribution of each electrophoretic zone to the net EOF is thereby visualized and the amount of EOF required for the detection of the zone structures at a particular location along the capillary, including at its end for MS detection, is predicted. For bare FS, PDMS and PMMA, simulations reveal that EOF is decreasing with time and that the entire IEF process is characterized by the asymptotic formation of a stationary steady-state zone configuration in which electrophoretic transport and electroosmotic zone displacement are opposite and of equal magnitude. The location of immobilization of the boundary between anolyte and most acidic carrier ampholyte is dependent on EOF, i.e. capillary material and anolyte. Overall time intervals for reaching this state in microchannels produced by PDMS and PMMA are predicted to be similar and about twice as long compared to uncoated FS. Additional mobilization for the detection of the entire pH gradient at the capillary end is required. Using concomitant electrophoretic mobilization with an acid as coanion in the catholyte is shown to provide sufficient additional cathodic transport for that purpose. FS capillaries dynamically double coated with polybrene and poly(vinylsulfonate) are predicted to provide sufficient electroosmotic pumping for detection of the entire IEF gradient at the cathodic column end.