1000 resultados para Microbiologic study
Resumo:
INTRODUCTION: The Nobel Direct implant (Nobel Biocare AB, Göteborg, Sweden) was developed to minimize marginal bone resorption and to result in "soft tissue integration" for an optimized aesthetic outcome. However, conflicting results have been presented in the literature. The aim of this present study was to evaluate the clinical and microbiologic outcomes of Nobel Direct implants. MATERIALS AND METHODS: Ten partially edentulous subjects without evidence of active periodontitis (mean age 55 years) received 12 Nobel Direct implants. Implants were loaded with single crowns after a healing period of 3 to 6 months. Treatment outcomes were assessed at month 24. Routine clinical assessments, intraoral radiographs, and microbiologic samplings were made. Histologic analysis of one failing implant and chemical spectroscopy around three unused implants was performed. Paired Wilcoxon signed-rank test was used for the evaluation of bone loss; otherwise, descriptive analysis was performed. RESULTS: Implants were functionally loaded after 3 to 6 months. At 2 years, the mean bone loss of remaining implants was 2.0 mm (SD +/- 1.1 mm; range: 0.0-3.4 mm). Three out of 12 implants with an early mean bone loss >3 mm were lost. The surviving implants showed increasing bone loss between 6 and 24 months (p = .028). Only 3 out of the 12 implants were considered successful and showed bone loss of <1.7 mm after 2 years. High rates of pathogens, including Aggregatibacter actinomycetemcomitans, Fusobacterium spp., Porphyromonas gingivalis, Pseudomonas aeruginosa, and Tanerella forsythia, were found. Chemical spectroscopy revealed, despite the normal signals from Ti, O, and C, also peaks of P, F, S, N, and Ca. A normal histologic image of osseointegration was observed in the apical part of the retrieved implant. CONCLUSION: Radiographic evidence and 25% implant failures are indications of a low success rate. High counts and prevalence of significant pathogens were found at surviving implants. Although extensive bone loss had occurred in the coronal part, the apical portion of the implant showed some bone to implant integration.
Resumo:
The aim of the present study was to evaluate the antimicrobial effect of antimicrobial photodynamic therapy (aPDT) in alveolar treatment of areas with induced periodontitis. Thirty male Wistar rats were subjected to ligature-induced periodontal disease (PD) in the first left inferior molars, while the right side molars did not receive ligatures. After 7 days of PD evolution, ligatures were removed from the left side, and the first left and right mandibular molars were extracted. Afterwards, animals were divided into groups according to the following treatments: control (C)-no treatment; mechanical debridement (MD)-mechanical debridement and irrigation with saline solution; and aPDT-mechanical debridement, irrigation with toluidine blue O (TBO), and 1 min of laser irradiation (GaAlAs, 660 nm, 30 mW, 32 J/cm2, 60 s). Ligatures were removed and samples of the alveolar content after extraction and after each treatment were collected for microbial processing by real-time polymerase chain reaction with specific primers for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. Data were submitted to statistical analysis by multiple comparison tests (McNemar test; p < 0.05). T. denticola was not found in the collected samples. A. actinomycetemcomitans and P. gingivalis were found in ligature samples. Tooth socket samples without periodontitis induction presented lesser microbial charge than samples with induced periodontitis (p < 0.05). aPDT significantly reduced A. actinomycetemcomitans levels on the left side (p < 0.05). It was concluded that aPDT was an effective antimicrobial treatment for tooth sockets in areas affected by induced periodontitis. © 2013 Springer-Verlag London.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To evaluate, by means of a microbiologic study, two kinds of soaps suggested by surgeons for presurgical handwashing, comparing a well-known antibacterial soap with a new soap formulated from vegetable oils. Materials and methods: Ten volunteers performed handwashing according to previously established protocols for routine antisepsis in operating rooms using 3 different soaps: a common, commercially marketed soap, serving as the control group (Group 1), with no antibacterial characteristics; a soap with 2% chlorhexidine (Group II); and a new soap formulated from vegetable oils at a concentration of 20%, known as surfactant, which was designed by the Chemistry Institute (Unesp/Araraquara – Grupo de Materiais Fotônicos) (Group III). The microbiological samples were collected immediately before and after handwashing and one hour later with the volunteer wearing surgical gloves. Results: ANOVA revealed that the following significant differences are found in the number of bacterial colonies: between soap types (a smaller number of colonies in the Group II soap), between periods (reduction in the number of colonies in the Group II soap), and the significant effect of the soap versus time interaction. Conclusion: The 2% chlorhexidine soap performed better in reducing the number of bacterial colonies on the hands immediately after handwashing and after one hour with the use of surgical gloves, when compared to the 20% surfactant soap.
Resumo:
OBJECTIVE: This study aimed at evaluating the flora and bacterial load of chronic leg ulcers (CLUs) according to the clinical judgment of colonization or infection.DESIGN: This was an analytical and cross-sectional study.SETTING: This study was conducted in an outpatient wound care unit in the Dermatology Department of the Botucatu School of Medicine-UNESP, Brazil.PARTICIPANTS: The participants were patients with CLUs who did not use systemic antibiotics.METHODS: The ulcers were clinically divided into 3 groups: ulcers with good granulation tissue (GGT), critical colonization (CC), and infection. Secretion was collected from a 1-cm(2) area using a swab and seeded by the semiquantitative method.OUTCOME MEASURES: The main outcome measures were genus and species of the bacteria found in the cultures and result of the semiquantitative culture correlating with the clinical diagnosis of GGT, CC, and infection.MAIN RESULTS: Seventy-seven ulcers were evaluated: 27 with GGT, 29 with CC, and 21 with infection. Gram-negative bacteria were most often found in all groups (81%): Pseudomonas aeruginosa, in granulation and colonized ulcers, and Proteus mirabilis, in infected ulcers. Ulcers from the infected group showed higher bacterial load.CONCLUSIONS: The flora of CLUs was predominantly constituted by gram-negative bacteria, and P aeruginosa was the most prevalent. The bacterial load of infected ulcers was higher as compared with the others, although some ulcers with GGT also presented a high load. The interpretation of microbiologic tests based on the swab techniques and even on semiquantitative analysis requires close clinical correlation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the present study was to evaluate radiographically and bacteriologically apical and periapical repair in dogs' teeth with induced chronic periapical lesions with the use of two different operative techniques (techniques 1 and 2). The study was conducted on 40 root canals of upper and lower premolars from two dogs aged approximately 12 months. Periapical lesions were induced by leaving the root canals exposed to the oral environment for 5 days and then sealing them with zinc oxide-eugenol for 45 days. After this period, radiographic examination revealed the occurrence of a radiolucent lesion and endodontic treatment was started. The two techniques did not differ in terms of chemomechanical preparation, final filling, or type of cement, but differed in terms of irrigating solution and the presence of an antibacterial dressing. Thus 4% to 6% hypochlorite and hydrogen peroxide (10 volumes) were used in technique 1 during chemomechanical preparation and an antibacterial dressing based on calcium hydroxide was applied between sessions, whereas Dakin's fluid (0.5% sodium hypochlorite solution) and a final filling with no antibacterial dressing were used in technique 2. After chemomechanical preparation, the root canals were filled with gutta-percha cones and Sealapex (Sealapex-Sybron, Kerr, Sao Paulo, Brazil), and the animals were killed 270 days after the final filling. Blocks were cut into 6-μm sections and stained by the Brown and Brenn method. Radiographic, histomicrobiologic and statistical analysis permitted us to conclude the following: radiographically there was a marked reduction or even the disappearance of the radiolucent area present before treatment with greater success in the group treated with technique 1 (group I) than in the group treated with technique 2 (group II); the extent of bacterial invasion of dentinal tubules was greater and more intense in group II than in group I; and the amount of microorganisms detected in the ramifications of the apical delta and in the lumen of the root canal was intense in group II and mild or absent in group I. © 1994.
Resumo:
Purpose: The goal of this study was to evaluate microbiota and radiographic peri-implant bone loss associated with ligature-induced peri-implantitis. Materials and Methods: Thirty-six dental implants with 4 different surfaces (9 commercially pure titanium, 9 titanium plasma-sprayed, 9 hydroxyapatite, and 9 acid-etched) were placed in the edentulous mandibles of 6 dogs. After 3 months with optimal plaque control, abutment connection was performed. On days 0, 20, 40, and 60 after placement of cotton ligatures, both microbiologic samples and periapical radiographs were obtained. The presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Campylobacter spp, Capnocytophaga spp, Fusobacterium spp, beta-hemolytic Streptococcus, and Candida spp were evaluated culturally. Results: P intermedia/nigrescens was detected in 13.89% of implants at baseline and 100% of implants at other periods. P gingivalis was not detected at baseline, but after 20 and 40 days it was detected in 33.34% of implants and at 60 days it was detected in 29.03% of dental implants. Fusobacterium spp was detected in all periods. Streptococci were detected in 16.67% of implants at baseline and in 83.34%, 72.22%, and 77.42% of implants at 20, 40, and 60 days, respectively. Campylobacter spp and Candida spp were detected in low proportions. The total viable count analysis showed no significant differences among surfaces (P = .831), although a significant difference was observed after ligature placement (P < .0014). However, there was no significant qualitative difference, in spite of the difference among the periods. The peri-implant bone loss was not significantly different between all the dental implant surfaces (P = .908). Discussion and Conclusions: These data suggest that with ligature-induced peri-implantitis, both time and periodontal pathogens affect all surfaces equally after 60 days.
Resumo:
Background: The aim of the present study is to evaluate the clinical and microbiologic changes resulting from non-surgical periodontal treatment associated with amoxicillin and metronidazole in individuals with aggressive periodontitis. Methods: Fifteen individuals with aggressive periodontitis received non-surgical periodontal treatment and 45 days after completion of treatment were treated with antibiotics. Clinical data and samples of subgingival plaque were collected at baseline, 45 days after the non-surgical periodontal treatment, and 1 month after the use of antimicrobial agents. After 3 and 6 months, only clinical data were collected. The presence and quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), Treponema denticola (Td), and Dialister pneumosintes were determined by real-time polymerase chain reaction. Results: All clinical parameters, with the exception of clinical attachment level (CAL), had significantly (P<0.05) improved at the end of the third month after non-surgical therapy associated with antibiotics. There was significant (P<0.05) reduction in the quantities of Td and Tf. After 1 month, there were significant (P<0.05) reductions in the frequencies of Pg and Tf. Conclusion: Non-surgical mechanical treatment associated with the use of amoxicillin and metronidazole led to an improvement in all clinical parameters studied, except for CAL, and significantly reduced the amount of subgingival Tf and Td. J Periodontal 2012;83:744-752.
Resumo:
The purpose of this study is to assess clinical and microbiologic effects of the non-surgical treatment of peri-implantitis lesions using either an erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser or an air-abrasive subgingival polishing method.
Resumo:
The aim of this study is to determine in a randomized trial the impact on treatment outcome after 12 months of different subgingival irrigation solutions during scaling and root planing (SRP).
Resumo:
Background: The bacterial colonization of the oral mucosa was evaluated in patients with asymptomatic oral lichen planus (OLP) and compared to the microbiologic status in mucosally healthy subjects. Methods: Bacteria from patients with clinically and histopathologically diagnosed OLP from the Stomatology Service, Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, were collected with a non-invasive swab system. Samples were taken from OLP lesions on the gingiva and from non-affected sites on the contralateral side of the mouth. The control population did not have OLP and was recruited from the student clinic. All samples were processed with the checkerboard DNA-DNA hybridization method using well-defined bacterial species for the analysis. Results: Significantly higher bacterial counts of Bacteroides ureolyticus (P = 0.001), Dialister species (sp.) (P = 0.006), Staphylococcus haemolyticus (P = 0.007), and Streptococcus agalactiae (P = 0.006) were found in samples taken from OLP lesions compared to sites with no clinical evidence of OLP. Significantly higher bacterial counts were found for Capnocytophaga sputigena, Eikenella corrodens, Lactobacillus crispatus, Mobiluncus curtisii, Neisseria mucosa, Prevotella bivia, Prevotella intermedia, and S. agalactiae at sites with lesions in subjects with OLP compared to sites in control subjects (P <0.001). Conclusions: Microbiologic differences were found between sites with OLP and sites in subjects without a diagnosis of OLP. Specifically, higher counts of staphylococci and S. agalactiae were found in OLP lesions.