956 resultados para Microbial residues
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Agricultural intensification has a strong impact on level of soil organic matter (SOM), microbial biomass stocks and microbial community structure in agro-ecosystems. The size of the microbial necromass C pool could be about 40 times that of the living microbial biomass C pool in soils. Due to the specificity, amino sugar analysis gives more important information on the relative contribution of fungal and bacterial residues to C sequestration potential of soils. Meanwhile, the relationship between microbial biomass and microbial necromass in soil and its ecological significance on SOM are not fully understood and likely to be very complex in grassland soils. This thesis focuses on the effects of tillage, grassland conversion intensities and fertilisation on microbial biomass, residues and community structure. The combined analyses of microbial biomass and residue formation of both fungi and bacteria provided a unique opportunity to study the effect of tillage, grassland conversion and fertilisation on soil microbial dynamics. In top soil at 0-30 cm layer, a reduction in tillage intensity by the GRT and NT treatments increased the accumulation of saprotrophic fungi in comparison with the MBT treatment. In contrast, the GRT and NT treatments promoted AMF at the expense of saprotrophic fungi in the bottom soil layer at 30-40 cm depth. The negative relationship between the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio points to the importance of the relationship between saprotrophic fungi and biotrophic AMF for tillage-induced changes in microbial turnover of SOC. One-season cultivation of winter wheat with two tillage events led to a significant loss in SOC and microbial biomass C stocks at 0-40 cm depth in comparison with the permanent grassland, even 5 years after the tillage event. However, the tillage induced loss in microbial biomass C was roughly 40% less in the long-term than in the short-term of the current experiment, indicating a recovery process during grassland restoration. In general, mould board tillage and grassland conversion to maize monoculture promoted saprotrophic fungi at the expense of biotrophic AMF and bacteria compared to undisturbed grassland soils. Slurry application promoted bacterial residues as indicated by the decreases in both, the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio. In addition, the lost microbial functional diversity due to tillage and maize monoculture was restored by slurry application both in arable and grassland soils. I conclude that the microbial biomass C/S ratio can be used as an additional indicator for a shift in microbial community. The strong relationships between microbial biomass and necromass indices points to the importance of saprotrophic fungi and biotrophic AMF for agricultural management induced effects on microbial turnover and ecosystem C storage. Quantitative information on exact biomass estimates of these two important fungal groups in soil is inevitably necessary to understand their different roles in SOM dynamics.
Resumo:
Das Ziel dieser Arbeit war, die Einflüsse von Wurzeln und Rhizodeposition auf den Umsatz von Körnerleguminosenresiduen und damit verknüpfte mikrobielle Prozesse zu untersuchen. In einem integrierten Versuch wurden Ackerbohne (Vicia faba L.), Erbse (Pisum sativum L.) und Weiße Lupine (Lupinus albus L.) untersucht. Der Versuch bestand aus drei Teilen, zwei Gefäß-Experimenten und einem Inkubationsexperiment, in denen ausgehend von einem Gefäß-Experiment derselbe Boden und dasselbe Pflanzenmaterial verwendet wurden. In Experiment I wurde die Stickstoff-Rhizodeposition der Körnerleguminosenarten, definiert als wurzelbürtiger N nach dem Entfernen aller sichtbaren Wurzeln im Boden, gemessen und der Verbleib des Rhizodepositions-N in verschiednenen Bodenpools untersucht. Dazu wurden die Leguminosen in einem Gefäßversuch unter Verwendung einer in situ 15N-Docht-Methode mit einer 15N Harnstofflösung pulsmarkiert. In Experiment II wurde der Umsatz der N-Rhizodeposition der Körnerleguminosen und der Einfluss der Rhizodeposition auf den anschließenden C- und N-Umsatz der Körnerleguminosenresiduen in einem Inkubationsexperiment untersucht. In Experiment III wurde der N-Transfer aus den Körnerleguminosenresiduen einschließlich N-Rhizodeposition in die mikrobielle Biomasse und die Folgefrüchte Weizen (Triticum aestivum L.) und Raps (Brassica napus L.) in einem Gewächshaus-Gefäßversuch ermittelt. Die in situ 15N Docht-Markierungs-Methode wies hohe 15N Wiederfindungsraten von ungefähr 84 Prozent für alle drei Leguminosenarten auf und zeigte eine vergleichsweise homogene 15N Verteilung zwischen verschiedenen Pflanzenteilen zur Reife. Die Wurzeln zeigten deutliche Effekte auf die N-Dynamik nach dem Anbau von Körnerleguminosen. Die Effekte konnten auf die N-Rhizodeposition und deren anschließenden Umsatz, Einflüsse der Rhizodeposition von Körnerleguminosen auf den anschließenden Umsatz ihrer Residuen (Stängel, Blätter, erfassbare Wurzeln) und die Wirkungen nachfolgender Nichtleguminosen auf den Umsatzprozess der Residuen zurückgeführt werden: Die N-Rhizodeposition betrug zur Reife der Pflanzen bezogen auf die Gesamt-N- Aufnahme 13 Prozent bei Ackerbohne und Erbse und 16 Prozent bei Weißer Lupine. Bezogen auf den Residual N nach Ernte der Körner erhöhte sich der relative Anteil auf 35 - 44 Prozent. Die N-Rhizodeposition ist daher ein wesentlicher Pool für die N-Bilanz von Körnerleguminosen und trägt wesentlich zur Erklärung positiver Fruchtfolgeeffekte nach Körnerleguminosen bei. 7 - 21 Prozent des Rhizodepositions-N wurden als Feinwurzeln nach Nasssiebung (200 µm) wiedergefunden. Nur 14 - 18 Prozent des Rhizodepositions-N wurde in der mikrobiellen Biomasse und ein sehr kleiner Anteil von 3 - 7 Prozent in der mineralischen N Fraktion gefunden. 48 bis 72 Prozent der N-Rhizodeposition konnte in keinem der untersuchten Pools nachgewiesen werden. Dieser Teil dürfte als mikrobielle Residualmasse immobilisiert worden sein. Nach 168 Tagen Inkubation wurden 21 bis 27 Prozent des Rhizodepositions-N in den mineralisiert. Der mineralisierte N stammte im wesentlichen aus zwei Pools: Zwischen 30 Prozent und 55 Prozent wurde aus der mikrobiellen Residualmasse mineralisiert und eine kleinere Menge stammte aus der mikrobielle Biomasse. Der Einfluss der Rhizodeposition auf den Umsatz der Residuen war indifferent. Durch Rhizodeposition wurde die C Mineralisierung der Leguminosenresiduen nur in der Lupinenvariante erhöht, wobei der mikrobielle N und die Bildung von mikrobieller Residualmasse aus den Leguminosenresiduen in allen Varianten durch Rhizodepositionseinflüsse erhöht waren. Das Potential des residualen Körnerleguminosen-N für die N Ernährung von Folgefrüchten war gering. Nur 8 - 12 Prozent des residualen N wurden in den Folgenfrüchten Weizen und Raps wiedergefunden. Durch die Berücksichtigung des Rhizodepositions-N war der relative Anteil des Residual-N bezogen auf die Gesamt-N-Aufnahme der Folgefrucht hoch und betrug zwischen 18 und 46 Prozent. Dies lässt auf einen höheren N-Beitrag der Körnerleguminosen schließen als bisher angenommen wurde. Die residuale N-Aufnahme von Weizen von der Blüte bis zur Reife wurde durch den Residual-N gespeist, der zur Blüte in der mikrobiellen Biomasse immobilisiert worden war. Die gesamte Poolgröße, Residual-N in der mikrobiellen Biomasse und in Weizen, veränderte sich von der Blüte bis zur Reife nicht. Jedoch konnte ein Rest von 80 Prozent des Residual-N in keinem der untersuchten Pools nachgewiesen werden und dürfte als mikrobielle Residualmasse immobilisiert worden sein oder ist noch nicht abgebaut worden. Die zwei unterschiedlichen Folgefrüchte - Weizen und Raps - zeigten sehr ähnliche Muster bei der N-Aufnahme, der Residual-N Wiederfindung und bei mikrobiellen Parametern für die Residuen der drei Körnerleguminosenarten. Ein differenzierender Effekt auf den Umsatz der Residuen bzw. auf das Residual-N-Aneignungsvermögen der Folgefrüchte konnte nicht beobachtet werden.
Resumo:
Five laboratory incubation experiments were carried out to assess the salinity-induced changes in the microbial use of sugarcane filter cake added to soil. The first laboratory experiment was carried out to prove the hypothesis that the lower content of fungal biomass in a saline soil reduces the decomposition of a complex organic substrate in comparison to a non-saline soil under acidic conditions. Three different rates (0.5, 1.0, and 2.0%) of sugarcane filter cake were added to both soils and incubated for 63 days at 30°C. In the saline control soil without amendment, cumulative CO2 production was 70% greater than in the corresponding non-saline control soil, but the formation of inorganic N did not differ between these two soils. However, nitrification was inhibited in the saline soil. The increase in cumulative CO2 production by adding filter cake was similar in both soils, corresponding to 29% of the filter cake C at all three addition rates. Also the increases in microbial biomass C and biomass N were linearly related to the amount of filter cake added, but this increase was slightly higher for both properties in the saline soil. In contrast to microbial biomass, the absolute increase in ergosterol content in the saline soil was on average only half that in the non-saline soil and it showed also strong temporal changes during the incubation: A strong initial increase after adding the filter cake was followed by a rapid decline. The addition of filter cake led to immobilisation of inorganic N in both soils. This immobilisation was not expected, because the total C-to-total N ratio of the filter cake was below 13 and the organic C-to-organic N ratio in the 0.5 M K2SO4 extract of this material was even lower at 9.2. The immobilisation was considerably higher in the saline soil than in the non-saline soil. The N immobilisation capacity of sugarcane filter cake should be considered when this material is applied to arable sites at high rations. The second incubation experiment was carried out to examine the N immobilizing effect of sugarcane filter cake (C/N ratio of 12.4) and to investigate whether mixing it with compost (C/N ratio of 10.5) has any synergistic effects on C and N mineralization after incorporation into the soil. Approximately 19% of the compost C added and 37% of the filter cake C were evolved as CO2, assuming that the amendments had no effects on the decomposition of soil organic C. However, only 28% of the added filter cake was lost according to the total C and d13C values. Filter cake and compost contained initially significant concentrations of inorganic N, which was nearly completely immobilized between day 7 and 14 of the incubation in most cases. After day 14, N re-mineralization occurred at an average rate of 0.73 µg N g-1 soil d-1 in most amendment treatments, paralleling the N mineralization rate of the non-amended control without significant difference. No significant net N mineralization from the amendment N occurred in any of the amendment treatments in comparison to the control. The addition of compost and filter cake resulted in a linear increase in microbial biomass C with increasing amounts of C added. This increase was not affected by differences in substrate quality, especially the three times larger content of K2SO4 extractable organic C in the sugarcane filter cake. In most amendment treatments, microbial biomass C and biomass N increased until the end of the incubation. No synergistic effects could be observed in the mixture treatments of compost and sugarcane filter cake. The third 42-day incubation experiment was conducted to answer the questions whether the decomposition of sugarcane filter cake also result in immobilization of nitrogen in a saline alkaline soil and whether the mixing of sugarcane filter cake with glucose (adjusted to a C/N ratio of 12.5 with (NH4)2SO4) change its decomposition. The relative percentage CO2 evolved increased from 35% of the added C in the pure 0.5% filter cake treatment to 41% in the 0.5% filter cake +0.25% glucose treatment to 48% in the 0.5% filter cake +0.5% glucose treatment. The three different amendment treatments led to immediate increases in microbial biomass C and biomass N within 6 h that persisted only in the pure filter cake treatment until the end of the incubation. The fungal cell-membrane component ergosterol showed initially an over-proportionate increase in relation to microbial biomass C that fully disappeared at the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added in comparison to the control treatment. Since day 14, the immobilized N was re-mineralized at rates between 1.31 and 1.51 µg N g-1 soil d-1 in the amendment treatments and was thus more than doubled in comparison with the control treatment. This means that the re-mineralization rate is independent from the actual size of the microbial residues pool and also independent from the size of the soil microbial biomass. Other unknown soil properties seem to form a soil-specific gate for the release of inorganic N. The fourth incubation experiment was carried out with the objective of assessing the effects of salt additions containing different anions (Cl-, SO42-, HCO3-) on the microbial use of sugarcane filter cake and dhancha leaves amended to inoculated sterile quartz sand. In the subsequent fifth experiment, the objective was to assess the effects of inoculum and temperature on the decomposition of sugar cane filter cake. In the fourth experiment, sugarcane filter cake led to significantly lower respiration rates, lower contents of extractable C and N, and lower contents of microbial biomass C and N than dhancha leaves, but to a higher respiratory quotient RQ and to a higher content of the fungal biomarker ergosterol. The RQ was significantly increased after salt addition, when comparing the average of all salinity treatments with the control. Differences in anion composition had no clear effects on the RQ values. In experiment 2, the rise in temperature from 20 to 40°C increased the CO2 production rate by a factor of 1.6, the O2 consumption rate by a factor of 1.9 and the ergosterol content by 60%. In contrast, the contents of microbial biomass N decreased by 60% and the RQ by 13%. The effects of the inoculation with a saline soil were in most cases negative and did not indicate a better adaptation of these organisms to salinity. The general effects of anion composition on microbial biomass and activity indices were small and inconsistent. Only the fraction of 0.5 M K2SO4 extractable C and N in non-fumigated soil was consistently increased in the 1.2 M NaHCO3 treatment of both experiments. In contrast to the small salinity effects, the quality of the substrate has overwhelming effects on microbial biomass and activity indices, especially on the fungal part of the microbial community.
Resumo:
Im Vordergrund der Arbeit stand die Erfassung der mikrobiellen Biomasse bzw. Residualmasse an der Wurzeloberfläche, im Rhizosphärenboden und im umgebenden Boden. Durch den Vergleich von verschiedenen Methoden zur Erfassung der mikrobiellen Biomasse wurden die Gehalte von pilzlichem und bakteriellem Kohlenstoff an der Rhizoplane und in der Rhizosphäre quantifiziert. Dabei wurde die Fumigations-Extraktions-Methode zur Erfassung der mikrobiellen Biomasse eingesetzt. Ergosterol diente als Indikator für die pilzliche Biomasse und die Aminozucker Glucosamin und Muraminsäure sollten Aufschluss geben über die bakterielle und pilzliche Biomasse bzw. Residualmasse in den drei Probenfraktionen. Dazu wurden Umrechnungsfaktoren erstellt, die zur Berechnung des bakteriellen und pilzlichen Kohlenstoffs aus den Gehalten von Muraminsäure und Pilz-Glucosamin dienten. Die Bestimmung von Aminozuckern wurde insoweit modifiziert, dass sowohl in Boden- als auch in Wurzelhydrolysaten die Messung von Glucosamin, Galactosamin, Muraminsäure und Mannosamin gleichzeitig als automatisiertes Standardverfahren mit Hilfe der HPLC erfolgen konnte. Es wurden drei Gefäßversuche durchgeführt: Im ersten Versuch wurde der Einfluss der Pflanzenart auf die mikrobielle Besiedlung der Wurzeloberflächen untersucht. Dabei wurden Wurzeln und Rhizosphärenboden von 15 verschiedenen Pflanzenarten miteinander verglichen. Im zweiten Versuch stand der Einfluss der mikrobiellen Biomasse eines Bodens auf die mikrobielle Besiedlung von Wurzeloberflächen im Vordergrund. Deutsches Weidelgras (Lolium perenne L.) wurde auf sieben verschiedenen Böden angezogen. Bei den Böden handelte es sich um sechs Oberböden, die sich hinsichtlich des Bodentyps und der Bewirtschaftungsform voneinander unterschieden, und einen Unterboden. Im dritten Versuch wurde die mikrobielle Besiedlung von Wurzeln nach teilweiser und vollständiger Entfernung der oberirdischen Biomasse beobachtet. Welsches Weidelgras (Lolium multiflorum Lam.) wurde 24 Tage nach der Aussaat beschnitten. Anschließend wurde über einen Versuchszeitraum von acht Tagen die mikrobielle Besiedlung an den Wurzeln und in den Bodenfraktionen bestimmt. Es bestätigte sich, dass der Einfluss der einzelnen Pflanzenart von entscheidender Bedeutung für die mikrobielle Besiedlung von Wurzeln ist. Bei fast allen Pflanzen wurde die mikrobielle Biomasse an den Wurzeln von Pilzen dominiert. Das Verhältnis von pilzlichem zu bakteriellem Kohlenstoff an den Wurzeln der 15 Pflanzenarten lag im Mittel bei 2,6. Bei der Betrachtung verschiedener Böden zeigte sich, dass die mikrobielle Besiedlung in tieferen Bodenschichten signifikant niedriger ist als in den Oberböden. Dabei war der Pilzanteil an der mikrobiellen Biomasse im Unterboden deutlich erhöht. Der Vergleich der Oberböden untereinander ergab, dass sowohl der Bodentyp als auch die Bewirtschaftungsform einen signifikanten Einfluss auf mikrobielle Besiedlung ausüben. Durch die teilweise oder vollständige Entfernung der oberirdischen Biomasse wurde eine Veränderung der mikrobiellen Besiedlung an den Wurzeln beobachtet. Das Verhältnis von pilzlichem zu bakteriellem Kohlenstoff sank in dem Versuchszeitraum von 2,5 auf 1,4. Dabei war die Förderung der Pilze in der Variante mit teilweise entfernter oberirdischer Biomasse relativ größer als in der Variante mit vollständig entfernter oberirdischer Biomasse. Entgegen der weit verbreiteten Annahme, dass bei den wurzelbesiedelnden Mikroorganismen die Bakterien gegenüber den Pilzen dominieren, zeigten die Ergebnisse ein gegensätzliches Bild. In allen drei Versuchen ergab sich gleichermaßen, dass sowohl im Boden als auch an den Wurzeln die Pilze gegenüber den Bakterien dominieren.
Resumo:
Mit dem Ziel, die Bildung und den Verbrauch von mikrobiellen Residuen zu ermitteln, wurden zwei Inkubationsversuche durchgeführt. Die Versuchsdauer betrug jeweils 67 Tage, wobei an den Tagen 5, 12, 33, 38, 45 und 67 Proben entnommen und auf Ct, Cmik, CO2 sowie die δ13C-Werte, Nt, Nmin und Ergosterol untersucht wurden. In Versuch 1 wurden als leicht umsetzbare Kohlenstoffquelle 3 mg C4-Kohlenstoff g-1Boden in Form von Rohrzucker bzw. Maiscellulose und als N-Ausgleich 200 µg NH4NO3-N g-1Boden hinzugegeben. Der verwendete Boden war ein Lößboden. In Versuch 2 wurden 3 mg C4-Kohlenstoff g-1Boden in Form von Rohrzucker und 100 µg NH4NO3-N g-1Boden in den Boden eingearbeitet. Als Substrat wurde hier ein gebrannter Lößboden verwendet. Bei beiden Versuchen erfolgte an Tag 33 nochmals eine Zugabe von 3 mg C3-Kohlenstoff g-1Boden in Form von Cellulose. Die Zugabe des C4-Kohlenstoffs führte in beiden Versuchen zu einer Zunahme des C4-Anteils in der mikrobiellen Biomasse. Insgesamt wurden im ersten Versuch ca. 78 % des C4-Kohlenstoffs und im zweiten Versuch ca. 64 % mineralisiert. In Versuch 1 wurde bei der Rohrzuckervariante der größte Teil an C4-C innerhalb der ersten 5 Tage mineralisiert, in der Cellulosevariante konnte dagegen eine geringere, aber länger anhaltende Mineralisation bis Tag 33 beobachtet werden. Dies sowie die Entwicklung des C4-C der mikrobiellen Biomasse deuten darauf hin, dass die Cellulose erst zu diesem Zeitpunkt vollständig umgesetzt war, der Rohrzucker dagegen aber schon nach 5 Inkubationstagen. Der Anteil an C4-C in den mikrobiellen Residuen lag an Tag 33 bei 28 % (Cellulosevariante) bzw. 22 % (Rohrzuckervariante) des zugegebenen C4-Kohlenstoffs. Dagegen lag im zweiten Versuch der Anteil an C4-Kohlenstoff in den mikrobiellen Residuen bei 40 %. In Versuch 1 führte die Zugabe der C3-Cellulose an Tag 33 nicht zu einem Verbrauch von mikrobiellen Residuen, im Versuch 2 hingegen zu einer signifikanten Abnahme. Der zugegebene Stickstoff wurde in beiden Versuchen durch die Zugabe des Rohrzuckers in hohen Anteilen immobilisiert, aber nur in geringem Umfang in die mikrobielle Biomasse inkorporiert. An Tag 33 lag der Anteil Stickstoff in den mikrobiellen Residuen bei 52 % (Versuch 1) bzw. 84 % (Versuch 2) des zugegebenen Stickstoffs. In Versuch 1 setzte nach 33 Tagen eine Remineralisation des immobilisierten Stickstoffs ein, unabhängig von der Zugabe der C3-Cellulose. In Versuch 2 wurde der immobilisierte Stickstoff zu keinem Zeitpunkt remineralisiert. Die Zugabe der C3-Cellulose führte hier nicht zu einer Remineralisation des immobilisierten Stickstoffs. Es bestätigte sich die Annahme, dass durch die Zugabe von leicht umsetzbaren Kohlstoffsubstraten die Bildung von mikrobiellen Residuen gesteigert werden kann. Die zweite Annahme, dass durch die Zugabe von N-freiem Substrat, hier C3-Cellulose, die mikrobiellen Residuen bevorzugt abgebaut werden, konnte nicht bestätigt werden.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Thermal degradation upon melting is one of the major drawbacks reported for polyhydroxyalkanoates (PHA). However, the role of residues originating from the fermentation and the extraction steps on the thermal stability of this class of biopolymers still needs to be clarified. In the particular case of PHA produced from mixed microbial cultures (MMC), this topic is even less documented in the literature. Here, two polyhydroxy(butyrate-co-valerate) (PHBV) produced from MMC enriched in PHA accumulating organisms and fed with cheese whey were studied. A micro extrusion line is used to produce filaments and assess the processability and the degradation of processed PHBV. The prototype micro extrusion line allows for studying grams of materials. The two PHBV contain 18 mol% HV. PHBV was recovered with 11 wt% residues, and further submitted to a purification procedure resulting in a second biopolyester containing less than 2 wt% impurities. The thermorheological characterization of the two PHBV is first presented, together with their semicrystalline properties. Then the processing windows of the two biopolyesters are presented. Finally, the properties of extruded filaments are reported and the thermomechanical degradation of PHBV is extensively studied. The structure was assessed by wide angle X-ray diffraction, mechanical and rheological properties are reported, thermal properties are studied with differential scanning calorimetry and thermogravimetric analysis, whereas Fourier Transform Infrared spectroscopy was used to assess the impact of the extrusion on PHBV chemical structure. All results obtained with the two PHBV are compared to assess the effects of residues on both PHBV processability and degradation.
Resumo:
"Available online 28 March 2016"
Resumo:
Cassava starch factories produce residues that can be commercialized as food ingredients. The objective of this study was to evaluate the microbiological safety of cassava peel and bagasse during storage, with and without chemical treatment. The bagasse was acidified with lactic acid, and the peel was immersed in a sodium hypochlorite solution. The microbiological analyses were carried out for 72 h after harvest. All of the samples showed the absence of pathogenic microorganisms, and the acidification and sanitization were effective in controlling total coliforms. Cassava bagasse and peel samples can be considered safe for consumption by humans as ingredients for other food products.
Resumo:
The objective of this study was to use 15N to label microbial cells to allow development of equations for estimating the microbial contamination in ruminal in situ incubation residues of forage produced under tropical conditions. A total of 24 tropical forages were ruminal incubated in 3 steers at 3 separate times. To determine microbial contamination of the incubated residues, ruminal bacteria were labeled with 15N by continuous intraruminal infusion 60 h before the first incubation and continued until the last day of incubation. Ruminal digesta was collected for the isolation of bacteria before the first infusion of 15N on adaptation period and after the infusion of 15N on collection period. To determine the microbial contamination of CP fractions, restricted models were compared with the full model using the model identity test. A value of the corrected fraction A was estimated from the corresponding noncorrected fraction by this equation: Corrected A fraction (ACPC) = 1.99286 + 0.98256 × A fraction without correction (ACPWC). The corrected fraction B was estimated from the corresponding noncorrected fraction and from CP, NDF, neutral detergent insoluble protein (NDIP), and indigestible NDF (iNDF) using the equation corrected B fraction (BCPC) = -17.2181 - 0.0344 × fraction B without correction (BCPWC) + 0.65433 × CP + 1.03787 × NDF + 2.66010 × NDIP - 0.85979 × iNDF. The corrected degradation rate of B fraction (kd)was estimated using the equation corrected degradation rate of B fraction (kdCPC) = 0.04667 + 0.35139 × degradation rate of B fraction without correction (kdCPWC) + 0.0020 × CP - 0.00055839 × NDF - 0.00336 × NDIP + 0.00075089 × iNDF. This equation was obtained to estimate the contamination using CP of the feeds: %C = 79.21 × (1 - e-0.0555t) × e-0.0874CP. It was concluded that A and B fractions and kd of CP could be highly biased by microbial CP contamination, and therefore these corrected values could be obtained mathematically, replacing the use of microbial markers. The percentage of contamination and the corrected apparent degradability of CP could be obtained from values of CP and time of incubation for each feed, which could reduce cost and labor involved when using 15N. © 2013 American Society of Animal Science. All rights reserved.
Resumo:
The short-term effects of surface lime application and black oat (Avena strigosa Schreb.) residues, with or without N fertilization, were evaluated in a long-term no-till (NT) system on a sandy clay loam, a kaolinitic, thermic Typic Hapludox from the state of Parana, Brazil. The main plot treatments were: control and dolomitic lime applied on soil surface at 8 Mg ha(-1). Three treatments with crop residues were evaluated on the subplots: (i) fallow, (ii) black oat residues, and (iii) black oat residues aft er N fertilization at 180 kg ha(-1). Black oat dry biomass was not affected by the treatments during 3 yr. Surface liming increased soil pH, microbial biomass, microbial activity, and bacterial/fungal ratio at the soil surface (0-5 cm), resulting in increased amino acid turnover, water-soluble humic substances formation, and N mineralization and nitrification. While the application of black oat did increase the soil pH, overall it had much less effect on soil biological processes and C and N pools than did lime. We concluded that black oat cannot replace the need for lime to optimize crop production in these tropical NT systems. In the long term, however, black oat should aid in the amelioration of acidity and replenishment of soil organic C pools and should help reduce erosion. Overall, this study suggests that overapplication of inorganic fertilizer N may occur in some tropical NT systems. Further experiments are required in NT systems to investigate the use of slow-release N fertilizers in combination with lime and black oat as a mechanism to reduce acidification and promote sustainability.
Resumo:
The application of tannery sludge to soils is a form of recycling; however, few studies have examined the impacts of this practice on soil microbial properties. We studied effects of two applications (2006 and 2007) of tannery sludge (with a low chromium content) on the structure of the bacterial community and on the microbial activity of soils. We fertilized an agricultural area in Rolandia, Parana state, Brazil with different doses of sludge based on total N content, which ranged from 0 to 1200 kg N ha(-1). Sludge remained on the soil surface for three months before being plowed. Soils were sampled seven times during the experiment. Bacterial community structure, assessed by denaturing gradient gel electrophoresis (DGGE), was modified by the application of tannery sludge. Soon after the first application, there was clear separation between the bacterial communities in different treatments, such that each dose of sludge was associated with a specific community. These differences remained until 300 days after application and also after the second sludge application, but 666 days after the beginning of the experiment no differences were found in the bacterial communities of the lowest doses and the control. The principal response curve (PRC) analysis showed that the first sludge application strongly stimulated biological activity even 300 days after application. The second application also stimulated activity, but at a lower magnitude and for a shorter time, given that 260 days after the second application there was no difference in biological activity among treatments. PRC also showed that the properties most influenced by the application of tannery sludge were enzymatic activities related to N cycling (asparaginase and urease). The redundancy analysis (RDA) showed that tannery sludge`s influence on microbial activity is mainly related to increases in inorganic N and soil pH. Results showed that changes in the structure of the bacterial community in the studied soils were directly related to changes of their biological activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
The agroindustrial residues including plant tissues rich in polyphenols were explored for microbial production of potent phenolics under solid state fermentation processes. The fungal strains capable of hydrolyzing tannin-rich materials were isolated from Mexican semidesert zones. These microorganisms have been employed to release potent phenolic antioxidants during the solid state fermentation of different materials (pomegranate peels, pecan nut shells, creosote bush and tar bush). This chapter includes the critical parameters for antioxidants production from selective microbes. Technical aspects of the microbial fermentation of antioxidants have also been discussed.