960 resultados para Microbial fuel cell
Resumo:
The demand for novel renewable energy sources, together with the new findings on bacterial electron transport mechanisms and the progress in microbial fuel cell design, have raised a noticeable interest in microbial power generation. Microbial fuel cell (MFC) is an electrochemical device that converts organic substrates into electricity via catalytic conversion by microorganism. It has represented a continuously growing research field during the past few years. The great advantage of this device is the direct conversion of the substrate into electricity and in the future, MFC may be linked to municipal waste streams or sources of agricultural and animal waste, providing a sustainable system for waste treatment and energy production. However, these novel green technologies have not yet been used for practical applications due to their low power outputs and challenges associated with scale-up, so in-depth studies are highly necessary to significantly improve and optimize the device working conditions. For the time being, the micro-scale MFCs show great potential in the rapid screening of electrochemically active microbes. This thesis presents how it will be possible to optimize the properties and design of the micro-size microbial fuel cell for maximum efficiency by understanding the MFC system. So it will involve designing, building and testing a miniature microbial fuel cell using a new species of microorganisms that promises high efficiency and long lifetime. The new device offer unique advantages of fast start-up, high sensitivity and superior microfluidic control over the measured microenvironment, which makes them good candidates for rapid screening of electrode materials, bacterial strains and growth media. It will be made in the Centre of Hybrid Biodevices (Faculty of Physical Sciences and Engineering, University of Southampton) from polymer materials like PDMS. The eventual aim is to develop a system with the optimum combination of microorganism, ion exchange membrane and growth medium. After fabricating the cell, different bacteria and plankton species will be grown in the device and the microbial fuel cell characterized for open circuit voltage and power. It will also use photo-sensitive organisms and characterize the power produced by the device in response to optical illumination.
Resumo:
Microbial fuel cell (MFC) research has focused mostly on producing electricity using soluble organic and inorganic substrates. This study focused on converting solid organic waste into electricity using a two-stage MFC process. In the first stage, a hydrolysis reactor produced soluble organic substrates from solid organic waste. The soluble substrates from the hydrolysis reactor were pumped to the second stage reactor: a continuous-flow, air-cathode MFC. Maximum power output (Pmax) of the MFC was 296 mW/m3 at a current density of 25.4 mA/m2 while being fed only leachate from the first stage reactor. Addition of phosphate buffer increased Pmax to 1,470 mW/m3 (89.4 mA/m2), although this result could not be duplicated with repeated polarization testing. The minimum internal resistance achieved was 77 Omega with leachate feed and 17 Omega with phosphate buffer. The low coulombic efficiency (
Resumo:
Biocathodes may be a suitable replacement of platinum in microbial fuel cells (MFCs) if the cost of MFCs is to be reduced. However, the use of enzymes as bio-cathodes is fraught with loss of activity as time progresses. A possible cause of this loss in activity might be pH increase in the cathode as pH gradients in MFCs are well known. This pH increase is however, accompanied by simultaneous increase in salinity; therefore salinity may be a confounding variable. This study investigated various ways of mitigating pH changes in the cathode of MFCs and their effect on laccase activity and decolourisation of a model azo dye Acid orange 7 in the anode chamber. Experiments were run with catholyte pH automatically controlled via feedback control or by using acetate buffers (pH 4.5) of various strength (100 mM and 200 mM), with CMI7000 as the cation exchange membrane. A comparison was also made between use of CMI7000 and Nafion 117 as the transport properties of cations for both membranes (hence their potential effects on pH changes in the cathode) are different.
Resumo:
Microbial Fuel Cells (MFC) technology finds space as a promising technology as a green alternative power-generating device, by the possibility to convert organic matter directly into electricity by microbially catalysed reactions, especially for the potential of the simultaneous treatment of wastewaters. Despite the studies that were carried out over the decades, MFCs still provide insufficient power and current densities in order to be commercially attractive in the energy market. Scientific community today pursues two main strategies in order to increase the overall performance output of the MFC. The first is to support the cells with an external supercapacitor (SC), which is able to accept and deliver charge much faster than normal capacitors, thanks to the use of an electrostatic double-layer capacitance, in combination with pseudocapacitance. The second is to implement directly the SC into the MFC, by using carbon electrodes with high surface area, similar to the SC. Both strategies are eventually supported by the use of charge boosters, respect to the application of the MFC. Galvanostatic measures for the MFC and SCs are performed at different currents, alone and by integration of both devices. The SCs used have a capacitance respectively of 1F, 3F and 6F. Subsequently, a stack of MFCs is assembled and paired to a 3F SC, in order to power an ambient diffuser, able to spray at intervals with a can and a controller. In conclusion, the use of a SC in parallel to the MFCs increases the overall performance of the system. The SC remove the discharge current limit of the MFC and increases the energy and power delivered by the system, allowing it to power for a certain time the ambient diffuser successfully. The key factor highlighted by the final experiment was the insufficient charging time of the SC, resulting finally in a voltage that is inadequate to power the device. Further studies are therefore necessary to improve the performance of the MFCs.
Resumo:
Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of different scientific and engineering fields, ranging from microbiology and electrochemistry to materials and environmental engineering. DescribingMFCsystems therefore involves an understanding of these different scientific and engineering principles. In this paper, we provide a review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results.
Resumo:
L’aigua i l’energia formen un binomi indissociable. En relació al cicle de l’aigua, des de fa varies dècades s’han desenvolupat diferents formes per recuperar part de l’energia relacionada amb l’aigua, per exemple a partir de centrals hidroelèctriques. No obstant, l’ús d’aquesta aigua també porta associat un gran consum energètic, relacionat sobretot amb el transport, la distribució, la depuració, etc... La depuració d’aigües residuals porta associada una elevada demanda energètica (Obis et al.,2009). En termes energètics, tot i que la despesa elèctrica d’una EDAR varia en funció de diferents paràmetres com la configuració i la capacitat de la planta, la càrrega a tractar, etc... es podria considerar que el rati mig seria d’ aproximadament 0.5 KWh•m-3.Els principals costos d’explotació estan relacionats tant amb la gestió de fangs (28%) com amb el consum elèctric (25%) (50% tractament biològic). Tot i que moltes investigacions relacionades amb el tractament d’aigua residual estan encaminades en disminuir els costos d’operació, des de fa poques dècades s’està investigant la viabilitat de que l’aigua residual fins i tot sigui una font d’energia, canviant la perspectiva, i començant a veure l’aigua residual no com a una problemàtica sinó com a un recurs. Concretament s’estima que l’aigua domèstica conté 9.3 vegades més energia que la necessària per el seu tractament mitjançant processos aerobis (Shizas et al., 2004). Un dels processos més desenvolupats relacionats amb el tractament d’aigües residuals i la producció energètica és la digestió anaeròbia. No obstant, aquesta tecnologia permet el tractament d’altes càrregues de matèria orgànica generant un efluent ric en nitrogen que s’haurà de tractar amb altres tecnologies. Per altre banda, recentment s’està investigant una nova tecnologia relacionada amb el tractament d’aigües residuals i la producció energètica: les piles biològiques (microbial fuel cells, MFC). Aquesta tecnologia permet obtenir directament energia elèctrica a partir de la degradació de substrats biodegradables (Rabaey et al., 2005). Les piles biològiques, més conegudes com a Microbial Fuel Cells (acrònim en anglès, MFC), són una emergent tecnologia que està centrant moltes mirades en el camp de l’ investigació, i que es basa en la producció d’energia elèctrica a partir de substrats biodegradables presents en l’aigua residual (Logan., 2008). Els fonaments de les piles biològiques és molt semblant al funcionament d’una pila Daniell, en la qual es separa en dos compartiments la reacció d’oxidació (compartiment anòdic) i la de reducció (compartiment catòdic) amb l’objectiu de generar un determinat corrent elèctric. En aquest estudi, bàsicament es mostra la posada en marxa d'una pila biològica per a l'eliminació de matèria orgànica i nitrogen de les aigües residuals.
Resumo:
Oscillatory kinetics is commonly observed in the electrocatalytic oxidation of most species that can be used in fuel cell devices. Examples include formic acid, methanol, ethanol, ethylene glycol, and hydrogen/carbon monoxide mixtures, and most papers refer to half-cell experiments. We report in this paper the experimental investigation of the oscillatory dynamics in a proton exchange membrane (PEM) fuel cell at 30 degrees C. The system consists of a Pt/C cathode fed with oxygen and a PtRu (1:1)/C anode fed with H(2) mixed with 100 ppm of CO, and was studied at different cell currents and anode flow rates. Many different states including periodic and nonperiodic series were observed as a function of the cell current and the H(2)/CO flow rate. In general, aperiodic/chaotic states were favored at high currents and low flow rates. The dynamics was further characterized in terms of the relationship between the oscillation amplitude and the subsequent time required for the anode to get poisoned by carbon monoxide. Results are discussed in terms of the mechanistic aspects of the carbon monoxide adsorption and oxidation. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3463725] All rights reserved.
Resumo:
The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.
Resumo:
MSS membranes are a good candidate for CO cleanup in fuel cell fuel processing systems due to their ability to selectively permeate H2 over CO via molecular sieving. Successfully scaled up tubular membranes were stable under dry conditions to 400°C with H2 permeance as high as 2 x 10-6 mol.m-2.s^-1.Pa^-1 at 200 degrees C and H2/CO selectivity up to 6.4, indicating molecular sieving was the dominant mechanism. A novel carbonised template molecular sieve silica (CTMSS) technology gave the scaled up membranes resilience in hydrothermal conditions up to 400 degrees C in 34% steam and synthetic reformate, which is required for use in fuel cell CO cleanup systems.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Microbial electrolysis cells (MECs) are an innovative and emerging technique based on the use of solid-state electrodes to stimulate microbial metabolism for wastewater treatment and simultaneous production of value-added compounds (such as methane). This research studied the performance of a two-chamber MEC in terms of organic matter oxidation (at the anode) and methane production (at the cathode). MEC‟s anode had been previously inoculated with an activated sludge, whereas the cathode chamber inoculum was an anaerobic sludge (containing methanogenic microorganisms). During the experimentation, the bioanode was continuously fed with synthetic solutions in anaerobic basal medium, at an organic load rate (OLR) of around 1 g L-1 d-1, referred to the chemical oxygen demand (COD). At the beginning (Run I), the feeding solution contained acetate and subsequently (Run II) it was replaced with a more complex solution containing soluble organic compounds other than acetate. For both conditions, the anode potential was controlled at -0.1 V vs. standard hydrogen electrode, by means of a potentiostat. During Run I, over 80% of the influent acetate was anaerobically oxidized at the anode, and the resulting electric current was recovered as methane at the cathode (with a cathode capture efficiency, CCE, accounting around 115 %). The average energy efficiency of the system (i.e., the energy captured into methane relative to the electrical energy input) under these conditions was over 170%. However, reactor‟s performance decreased over time during this run. Throughout Run II, a substrate oxidation over 60% (on COD basis) was observed. The electric current produced (57% of coulombic efficiency) was also recovered as methane, with a CCE of 90%. For this run the MEC‟s average energy efficiency accounted for almost 170 %. During all the experimentation, a very low biomass growth was observed at the anode whereas ammonium was transferred through the cationic membrane and concentrated at the cathode. Tracer experiments and scanning electron microscopy analyses were also carried out to gain a deeper insight into the reactor performance and also to investigate the possible reasons for partial loss of performance. In conclusion, this research suggests the great potential of MEC to successfully treat low-strength wastewaters, with high energy efficiency and very low sludge production.
Resumo:
Univariate statistical control charts, such as the Shewhart chart, do not satisfy the requirements for process monitoring on a high volume automated fuel cell manufacturing line. This is because of the number of variables that require monitoring. The risk of elevated false alarms, due to the nature of the process being high volume, can present problems if univariate methods are used. Multivariate statistical methods are discussed as an alternative for process monitoring and control. The research presented is conducted on a manufacturing line which evaluates the performance of a fuel cell. It has three stages of production assembly that contribute to the final end product performance. The product performance is assessed by power and energy measurements, taken at various time points throughout the discharge testing of the fuel cell. The literature review performed on these multivariate techniques are evaluated using individual and batch observations. Modern techniques using multivariate control charts on Hotellings T2 are compared to other multivariate methods, such as Principal Components Analysis (PCA). The latter, PCA, was identified as the most suitable method. Control charts such as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic procedures, using Contribution plots, for out of control points that are detected using these control charts, are also discussed. These plots enable the investigator to perform root cause analysis. Multivariate batch techniques are compared to individual observations typically seen on continuous processes. Recommendations, for the introduction of multivariate techniques that would be appropriate for most high volume processes, are also covered.