915 resultados para Micro-topography analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method was developed for a quantitative assessment of pore interconnectivity using micro-CT data. This method makes use of simulated spherical particles, percolating through the interconnected pore network. For each sphere diameter, the accessible pore volume is calculated. This algorithm was applied to compare pore interconnectivity of two different scaffold architectures; one created by salt-leaching and the other by stereolithography. The algorithm revealed a much higher pore interconnectivity for the latter one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is examine how firms renew their organisational capabilities based on micro organisational processes. Organisational capability development literature points to firms’ failure in capability renewal process. To overcome this inefficiency, it is proposed to integrate dynamic capability and ambidexterity perspectives by studying knowledge integration within product innovation. In this relation, applying micro perspective in studying technology diffusion within Iranian Auto industry revealed micro co-evolutionary relationships between knowledge integration within product innovation and capability development. Furthermore, based on near decomposability principals, the analysis suggested relationships among modularity of product architecture, modularity of organisational modularity and modularity of industry architecture in downstream and upstream value chain. Based on these micro-macro co evolutionary effects, capability development process underlying successful corporate entrepreneurship may be verified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stress states in Si particles of cast Al-Si based alloys depend on its morphology and the heat treatment given to the alloy. The Si particles fracture less on modification and fracture more in the heat treated condition. An attempt has been made in this work to study the effect of heat treatment and Si modification on the stress states of the particles. Such understanding will be valuable for predicting the ductility of the alloy. The stress states of Si particles are estimated by Raman technique and compared with the microstructure-based FEM simulations. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to determine the stress states in Si particles with (111) orientations. Stress states are measured in the as-received state and under uniaxial compression. The residual stress, the stress in the elastic-plastic regime and the stress which causes fracture of the particles is estimated by Raman technique. FEM study demonstrates that the stress distribution is uniform in modified Si, whereas the unmodified Si shows higher and more complex stress states. The onset of plastic flow is observed at sharp corners of the particles and is followed by localization of strain between particles. Clustering of particles generates more inhomogeneous plastic strain in the matrix. Particle stress estimated by Raman technique is in agreement with FEM calculations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compliant pneumatic micro-actuators are interesting for applications requiring large strokes and forces in delicate environments. These include for instance minimally invasive surgery and assembly of microcomponents. This paper presents a theoretical and experimental analysis of a balloon-type compliant micro-actuator. Finite element modeling is used to describe the complex behavior of these actuators, which is validated through prototype experiments. Prototypes with dimensions ranging from 11mm × 2mm × 0.24mm to 4mm × 1mm × 0.12mm are fabricated by a newly developed production process based on micromilling and micromolding. The larger actuators are capable of delivering out-of-plane strokes of up to 7mm. Further, they have been integrated in a platform with two rotational and one translational degree of freedom. © 2011 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide range of flip chip technologies with solder or adhesives have become dominant solutions for high density packaging applications due to the excellent electrical performance, high I/O density and good thermal performance. This paper discusses the use of modeling technique to predict the reliability of high density packaged flip chips in the humid environment. Reliability assessment is discussed for flip chip package at ultra-fine pitch with anisotropic conductive film (ACF). The purpose of this modeling work is to understand the role that moisture plays in the failure of ACF flip chips. A macro-micro 3D finite element modeling technique was used in order to make the multi-length-scale modeling of the ACF flip chip possible. Modeling results are consistent with the findings in the experimental work

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites with a weak interface between the filler and matrix which are susceptible to interfacial crack formation are studied. A finite-element model is developed to predict the stres/strain behavior of particulate composites with an interfacial crack. This condition can be distinguished as a partially bonded inclusion. Another case arises when there is no bonding between the inclusion and the matrix. In this latter case the slip boundary condition is imposed on the section of the interface which remains closed. The states of stress and displacement fields are obtained for both cases. The location of any further deformation through crazing or shear band formation is identified as the crack tip. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the crack tip. Whereas this might lead to slightly higher strength, it decreases the load-transfer efficiency and stiffness of this type of composite. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cubic GaN layers are grown by molecular beam epitaxy on (001) GaAs substrates. Optical micrographs of the GaN epilayers intentionally grown at Ga excess reveal the existence of surface irregularities such as bright rectangular structures, dark dots surrounded by rectangles and dark dots without rectangles. Micro-Raman spectroscopy is used to study the structural properties of these inclusions and of the epilayers in greater detail. We conclude that the observed irregularities are the result of a melting process due to the existence of a liquid Ga phase on the growing surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)