873 resultados para Micro-raman


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress in local isolation structures is studied by micro‐Raman spectroscopy. The results are correlated with predictions of an analytical model for the stress distribution and with cross‐sectional transmission electron microscopy observations. The measurements are performed on structures on which the Si3N4 oxidation mask is still present. The influence of the pitch of the periodic local isolation pattern, consisting of parallel lines, the thickness of the mask, and the length of the bird"s beak on the stress distribution are studied. It is found that compressive stress is present in the Si substrate under the center of the oxidation mask lines, with a magnitude dependent on the width of the lines. Large tensile stress is concentrated under the bird"s beak and is found to increase with decreasing length of the bird"s beak and with increasing thickness of the Si3N4 film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhodium phthalocyanine (RhPc) was synthesized and ultra thin Langmuir-Blodgett (LB) films of RhPc were successfully fabricated. The LB film characterization was carried out using both UV-vis absorption spectra and Raman scattering. The Raman spectroscopy was carried out using 633 and 780 nm laser lines. LB films were deposited onto Ag nanoparticles to achieve the surface-enhanced pre-resonance Raman scattering (pre-SERRS) and surface-enhanced Raman scattering (SERS) for both laser lines, respectively, which allowed the characterization of the RhPc ultra thin films. The morphology of the LB RhPc neat film is extracted from micro-Raman imaging. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The zircon mineral is widely studied in geochronology. In the case of the fission track method (FTM), the age is determined by the density of fission tracks at the zircon surface, which can be observed with an optical microscope after an appropriate chemical treatment (etching). The etching must be isotropic at the zircon grain surface to be used in the FTM, which leads those zircon grains whose etching is anisotropic to be discarded. The only reason for this discarding is the nonuniform morphology of the surface grain seen by optical microscopy, that is, no further physicochemical analysis is performed. In this work, combining micro-Raman and scanning electron microscopy (SEM) to study the etching anisotropy, it was shown that zircon grains that present at least one area at the surface where the density of fission track is uniform can be used in the FTM. The micro-Raman showed characteristic spectra of the standard zircon sample either from the areas where there are tracks or from where there are not. The only difference found was in the Raman bandwidths, which were broader for the areas with higher density of fission tracks. This suggests simply a decrease in the relative percentage of the crystalline/amorphous phases at these areas. The SEM/energy dispersive spectrometry (EDX) showed that there were no significant differences in the principal chemical composition at the areas with and without fission tracks. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous because it is a nondestructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates at 80 degrees C, while the transition to P-PVDF was monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, along with the concomitant increase in the 839 cm-1 band characteristic of the P-phase. The alpha ->beta transition in our PVDF samples could be achieved even for the sample stretched to twice (2 X -stretched) the initial length and it did not depend on the stretching rate in the range between 2.0 and 7.0 mm/min. These conclusions were corroborated by differential scanning calorimetry (DSC) and X-ray diffraction experiments for PVDF samples processed under the same conditions as in the Raman scattering measurements. Poling with negative corona discharge was found to affect the a-PVDF morphology, improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, i.e., X-ray diffraction and infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cubic GaN layers are grown by molecular beam epitaxy on (001) GaAs substrates. Optical micrographs of the GaN epilayers intentionally grown at Ga excess reveal the existence of surface irregularities such as bright rectangular structures, dark dots surrounded by rectangles and dark dots without rectangles. Micro-Raman spectroscopy is used to study the structural properties of these inclusions and of the epilayers in greater detail. We conclude that the observed irregularities are the result of a melting process due to the existence of a liquid Ga phase on the growing surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigated the formation of porous silica matrix obtained by hydrothermal treatment under saturated steam condition from Pyrex (R) glass. This investigation was carried out by scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray powder diffractometry (XRD) and Raman microscopy. We observed the presence of connected and homogeneously distributed pores in a non-crystalline silica phase and a detectable interface between silica and remnant glass phases resulting in a framework similar to asymmetric membranes. The results indicate that the process of phase separation takes place at lower temperature than that of glass-transition on the surface of the glass phase. Essential reaction between water and silica at supercritical condition together with the formation and leaching of soluble phase contribute to obtain porous silica matrix, (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterization by micro-Raman spectroscopy of polymeric materials used as nuclear track detectors reveals physico-chemical and morphological information on the material's molecular structure. In this work, the nuclear track detector poly(allyl diglycol carbonate), or Columbia Resin 39 (CR-39), was characterized according to the fluence of alpha particles produced by a 226Ra source and chemical etching time. Therefore, damage of the CR-39 chemical structure due to the alpha-particle interaction with the detector was analyzed at the molecular level. It was observed that the ionization and molecular excitation of the CR-39 after the irradiation process entail cleavage of chemical bonds and formation of latent track. In addition, after the chemical etching, there is also loss of polymer structure, leading to the decrease of the group density C-O-C (∼888 cm-1), CH=CH (∼960 cm -1), C-O (∼1110 cm-1), C-O-C (∼1240 cm -1), C-O (∼1290 cm-1), C-O (∼1741 cm -1), -CH2- (∼2910 cm-1), and the main band -CH2- (∼2950 cm-1). The analyses performed after irradiation and chemical etching led to a better understanding of the CR-39 molecular structure and better comprehension of the process of the formation of the track, which is related to chemical etching kinetics. Copyright © 2013 Society for Applied Spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

É descrita a invenção de um substrato flexível portátil para detecção e análises químicas usando fenômenos de amplificação sers e serrs por espectroscopia micro-raman e processo de obtenção do dito substrato. É descrita a invenção de um substrato flexível portátil para detecção e análises químicas usando fenômenos de amplificação sers (surface enhanced raman spectroscopy) e serrs (surface-enhanced resonance spectroscopy) por espectroscopia micro-raman e respectivo processo de obtenção do dito substrato que provê um substrato de borracha natural impregnando com nanopartículas de ouro.