968 resultados para Micro fusion framework
Resumo:
Mobile devices and smartphones have become a significant communication channel for everyday life. The sensing capabilities of mobile devices are expanding rapidly, and sensors embedded in these devices are cheaper and more powerful than before. It is evident that mobile devices have become the most suitable candidates to sense contextual information without needing extra tools. However, current research shows only a limited number of sensors are being explored and investigated. As a result, it still needs to be clarified what forms of contextual information extracted from mo- bile sensors are useful. Therefore, this research investigates the context sensing using current mobile sensors, the study follows experimental methods and sensor data is evaluated and synthesised, in order to deduce the value of various sensors and combinations of sensor for the use in context-aware mobile applications. This study aims to develop a context fusion framework that will enhance the context-awareness on mobile applications, as well as exploring innovative techniques for context sensing on smartphone devices.
Resumo:
This thesis explores perceptions and preferences on regional action in EU-related frameworks among regional actors in Western Sweden. Building upon the literature on Europeanisation and the Fusion approach, three dimensions of Europeanisation are clarified and explored– download, upload and crossload – and together with a set of five variables that constitute the Micro Fusion Framework; a comprehensive analytical tool is developed. The thesis analyses the intense debate among the members of West Sweden that took place from 2011 to 2013 that focused on how to functionally organise the regional office in Brussels in order to meet future challenges. Surprisingly, the members eventually decided to terminate their cooperation and close the jointly owned office in Brussels in spite of the fact that it has been widely regarded as successful and effective. Diverging perceptions and preferences is understood in terms of three positions on regional action; a download-, upload- and a coherent oriented position. Finally, the thesis presents the empirical findings and discusses in relation to three fusion scenarios, infusion, defusion and clustered fusion. In terms of Micro Fusion Framework, the dynamics shaping why West Sweden was finally regarded as a dysfunctional arena for regional action are explained by a shift of attention and action among regional actors in Western Sweden that led to pressure for further institutional adaptation in order to meet the demand of how ‘to get the best out of the EU’. Further, this redefinition of how to handle EU-affairs within the upload-oriented position was accompanied by positive attitudes towards the potential to bypass the state and thereby pursue regional priorities directly in Brussels given the compound nature of the EU. In contrast, those regional actors that are found to be more download-oriented often question the benefits of uploading activities in practice and advocate close relations to the state. A coherent oriented position recognises the importance of activities related to both of the vertical dimensions of Europeanisation.
Resumo:
The aim of this paper is to demonstrate the validity of using Gaussian mixture models (GMM) for representing probabilistic distributions in a decentralised data fusion (DDF) framework. GMMs are a powerful and compact stochastic representation allowing efficient communication of feature properties in large scale decentralised sensor networks. It will be shown that GMMs provide a basis for analytical solutions to the update and prediction operations for general Bayesian filtering. Furthermore, a variant on the Covariance Intersect algorithm for Gaussian mixtures will be presented ensuring a conservative update for the fusion of correlated information between two nodes in the network. In addition, purely visual sensory data will be used to show that decentralised data fusion and tracking of non-Gaussian states observed by multiple autonomous vehicles is feasible.
Resumo:
Numerous algorithms have been proposed recently for sparse signal recovery in Compressed Sensing (CS). In practice, the number of measurements can be very limited due to the nature of the problem and/or the underlying statistical distribution of the non-zero elements of the sparse signal may not be known a priori. It has been observed that the performance of any sparse signal recovery algorithm depends on these factors, which makes the selection of a suitable sparse recovery algorithm difficult. To take advantage in such situations, we propose to use a fusion framework using which we employ multiple sparse signal recovery algorithms and fuse their estimates to get a better estimate. Theoretical results justifying the performance improvement are shown. The efficacy of the proposed scheme is demonstrated by Monte Carlo simulations using synthetic sparse signals and ECG signals selected from MIT-BIH database.
Resumo:
We present a probabilistic, online, depth map fusion framework, whose generative model for the sensor measurement process accurately incorporates both long-range visibility constraints and a spatially varying, probabilistic outlier model. In addition, we propose an inference algorithm that updates the state variables of this model in linear time each frame. Our detailed evaluation compares our approach against several others, demonstrating and explaining the improvements that this model offers, as well as highlighting a problem with all current methods: systemic bias. © 2012 Springer-Verlag.
Resumo:
Iris based identity verification is highly reliable but it can also be subject to attacks. Pupil dilation or constriction stimulated by the application of drugs are examples of sample presentation security attacks which can lead to higher false rejection rates. Suspects on a watch list can potentially circumvent the iris based system using such methods. This paper investigates a new approach using multiple parts of the iris (instances) and multiple iris samples in a sequential decision fusion framework that can yield robust performance. Results are presented and compared with the standard full iris based approach for a number of iris degradations. An advantage of the proposed fusion scheme is that the trade-off between detection errors can be controlled by setting parameters such as the number of instances and the number of samples used in the system. The system can then be operated to match security threat levels. It is shown that for optimal values of these parameters, the fused system also has a lower total error rate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper develops a micro-simulation framework for multinational entry and sales activities across countries. The model is based on Eaton, Kortum, and Kramarz's (2010) quantitative trade model adapted towards multinational production. Using micro data on Japanese manufacturing firms, we first stylize the empirical regularities of multinational entry and sales activity and estimate the model's structural parameters with simulated method of moments. We then demonstrate that our adapted model is able to replicate important dimensions of the in-sample moments conditioned in our estimation strategy. Importantly, it is able to replicate activity under an economic period with a far different level of FDI barriers than was conditioned upon in our estimation sample. Overall, our research highlights the richness of the simulation framework for performing counterfactual analysis of various FDI policies.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone's video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork
Resumo:
We describe a System-C based framework we are developing, to explore the impact of various architectural and microarchitectural level parameters of the on-chip interconnection network elements on its power and performance. The framework enables one to choose from a variety of architectural options like topology, routing policy, etc., as well as allows experimentation with various microarchitectural options for the individual links like length, wire width, pitch, pipelining, supply voltage and frequency. The framework also supports a flexible traffic generation and communication model. We provide preliminary results of using this framework to study the power, latency and throughput of a 4x4 multi-core processing array using mesh, torus and folded torus, for two different communication patterns of dense and sparse linear algebra. The traffic consists of both Request-Response messages (mimicing cache accesses)and One-Way messages. We find that the average latency can be reduced by increasing the pipeline depth, as it enables higher link frequencies. We also find that there exists an optimum degree of pipelining which minimizes energy-delay product.
Resumo:
Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.
Resumo:
In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.