991 resultados para Micro Tomography
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
ray micro-tomography is a well-established technique for non-invasive imaging and evaluation of heterogeneous materials. An inexpensive X-ray micro-tomography system has been designed and built for the specific purposes of examining root growth and root/soil interactions. The system uses a silver target X-ray source with a focal spot diameter of 80 mum, an X-ray image intensifier with a sampling aperture of about 100 mum, and a sample with a diameter of 25 mm. Pre-germinated wheat and rape seeds were grown for up to 8-10 days in plastic containers in a sandy loam soil sieved to < 250 μm, and imaged with the X-ray system at regular intervals. The quality of 3 D image obtained was good allowing the development and growth of both root axes and some first-order laterals to be observed. The satisfactory discrimination between soil and roots enabled measurements of root diameter (wheat values were 0.48-1.22 mm) in individual tomographic slices and, by tracking from slice to slice, root lengths were also measured. The measurements obtained were generally within 10% of those obtained from destructive samples measured manually and with a flat-bed scanner. Further developments of the system will allow more detailed examination of the root: soil interface.
Resumo:
An X-ray micro-tomography system has been designed that is dedicated to the low-dose imaging of radiation sensitive living organisms and has been used to image the early development of the first few days of plant development immediately after germination. The system is based on third-generation X-ray micro-tomography system and consists of an X-ray tube, two-dimensional X-ray detector and a mechanical sample manipulation stage. The X-ray source is a 50 kVp X-ray tube with a silver target with a filter to centre the X-ray spectrum on 22 keV.A 100 mm diameter X-ray image intensifier (XRII) is used to collect the two-dimensional projection images. The rotation tomography table incorporates a linear translation mechanism to eliminate ring artefact that is commonly associated with third-generation tomography systems' Developing maize seeds (Triticum aestivum) have been imaged using the system with a cubic voxel linear dimension of 100 mum, over a diameter of 25 mm and the root lengths and volumes measured. The X-ray dose to the plants was also assessed and found to have no effect on the plant root development. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Zur geometrischen Vermessung und Beschreibung von Einschlüssen in natürlichen sowie im Labor geschaffenen Eispartikeln wurde ein neuartiger Versuchaufbau an der Tomographie-Endstation der Material Science Beam Line an der Swiss Light Source (SLS, Paul Scherrer Institut, Villigen, Schweiz) entwickelt. Dieser besteht aus einer Plexiglas-Tasse und einem doppelwandigen Kaptonfolien-Käfig, der wiederum auf die Düse eines CryojetXL (Oxford Instruments) montiert wurde. Abgesehen von dem hohen Maß an Flexibilit¨at bez¨uglich der Installation erlaubt es dieser Aufbau, die Temperatur des Experiments mit einer Genauigkeit von ± 1 K über einen Bereich von 271 K bis 220 K zu regeln. In den hier beschriebenen Experimenten wurde eine räumliche Auflösung von 1.4 µm erzielt.
Resumo:
Batrachoidids, which include midshipman and toadfish are less known among embryologists, but are common in other fields. They are characteristic for their acoustic communication, and develop hearing and sound production while young juveniles. They lay large benthic eggs (>5mm) with a thick chorion and adhesive disk and slow development, which are particularly challenging for studying embryology. Here we took advantage of a classical tissue clearing technique and the OPenT open-source platform for optical tomography imaging, to image a series of embryos and larvae from 3 to 30mm in length, which allowed detailed 3D anatomical reconstructions non-destructively. We documented some of the developmental stages (early and late in development) and the anatomy of the delicate stato-acoustic organs, swimming bladder and associated sonic muscles. Compared to other techniques accessible to developmental biology labs, OPenT provided advantages in terms of image quality, cost of operation and data throughput, allowing identification and quantitative morphometrics of organs in larvae, earlier and with higher accuracy than is possible with other imaging techniques.
Resumo:
The critical process parameter for mineral separation is the degree of mineral liberation achieved by comminution. The degree of liberation provides an upper limit of efficiency for any physical separation process. The standard approach to measuring mineral liberation uses mineralogical analysis based two-dimensional sections of particles which may be acquired using a scanning electron microscope and back-scatter electron analysis or from an analysis of an image acquired using an optical microscope. Over the last 100 years, mathematical techniques have been developed to use this two dimensional information to infer three-dimensional information about the particles. For mineral processing, a particle that contains more than one mineral (a composite particle) may appear to be liberated (contain only one mineral) when analysed using only its revealed particle section. The mathematical techniques used to interpret three-dimensional information belong, to a branch of mathematics called stereology. However methods to obtain the full mineral liberation distribution of particles from particle sections are relatively new. To verify these adjustment methods, we require an experimental method which can accurately measure both sectional and three dimensional properties. Micro Cone Beam Tomography provides such a method for suitable particles and hence, provides a way to validate methods used to convert two-dimensional measurements to three dimensional estimates. For this study ore particles from a well-characterised sample were subjected to conventional mineralogical analysis (using particle sections) to estimate three-dimensional properties of the particles. A subset of these particles was analysed using a micro-cone beam tomograph. This paper presents a comparison of the three-dimensional properties predicted from measured two-dimensional sections with the measured three-dimensional properties.
Resumo:
This contribution outlines Synchrotron-based X-ray micro-tomography and its potential use in structural geology and rock mechanics. The paper complements several recent reviews of X-ray microtomography. We summarize the general approach to data acquisition, post-processing as well as analysis and thereby aim to provide an entry point for the interested reader. The paper includes tables listing relevant beamlines, a list of all available imaging techniques, and available free and commercial software packages for data visualization and quantification. We highlight potential applications in a review of relevant literature including time-resolved experiments and digital rock physics. The paper concludes with a report on ongoing developments and upgrades at synchrotron facilities to frame the future possibilities for imaging sub-second processes in centimetre-sized samples.
Resumo:
O presente trabalho tem por objetivo investigar a microbiota de canais radiculares que apresentem lesão perirradicular e relacionar o perfil microbiano detectado com a área/volume destas lesões visualizadas por radiografias periapicais e tomografias computadorizadas tipo cone-beam. Foram selecionados 19 dentes com infecção endodôntica primária. As amostras microbiológicas foram coletadas dos canais com o auxílio de limas tipo Hedströen e cones de papel absorvente estéril. A técnica do Checkerboard DNA-DNA hybridization foi utilizada para detecção de até 79 espécies bacterianas em cada amostra, utilizando sondas de DNA específicas. Os dados microbiológicos foram expressos em percentagem média (prevalência), proporção e nível médio de cada espécie em cada amostra. Os testes t independente e de correlação de Pearson foram usados para correlacionar a contagem das bactérias testadas com os dados clínicos (p≤ 0,05). Foi encontrada uma média de 17 espécies por amostra. E. brachy (70%), S. pneumonia (67,5%), P. oris (67,5%), E. faecium (65%), N. gonorrhoeae (62,5%), K. pneumoniae (62,5%), P. melaninogenica (62,5%), P. nigrescens (62,5%) e P. micra (62,5%) foram as espécies mais prevalentes, e as espécies encontradas em níveis médios mais altos foram P. oris (7,5 x 105), E. brachy (7,3 x 105), E. faecium (7,2 x 105), K. pneumoniae (7,0 x 105), N. gonorrhoeae (6,8 x 105), S. epidermidis (6,5 x 105) e H. pylori (6,5 x 105). Houve correlação positiva entre as lesões periapicais de maior área e contagens significativamente mais altas da carga bacteriana total e de bactérias Gram-negativas (p<0,05). Baseado nos resultados obtidos é possível concluir que a microbiota presente em dentes com periodontite apical primária possui perfil misto e complexo, e que uma maior tamanho de lesão perirradicular pode estar associada a contagem elevada espécie totais e bactérias Gram-negativas.
Resumo:
Single lap joints of woven GFRP composites have been investigated for impact induced damage modes using C-scan, X-ray micro tomography, imaging and finite element (FE) modelling. This has allowed for damage modes to be observed in 3D from macro to micro level-resulting in much better understanding of damage mechanisms and realistic FE modelling.
Resumo:
Research on the micro-structural characterization of metal-matrix composites uses X-ray computed tomography to collect information about the interior features of the samples, in order to elucidate their exhibited properties. The tomographic raw data needs several steps of computational processing in order to eliminate noise and interference. Our experience with a program (Tritom) that handles these questions has shown that in some cases the processing steps take a very long time and that it is not easy for a Materials Science specialist to interact with Tritom in order to define the most adequate parameter values and the proper sequence of the available processing steps. For easing the use of Tritom, a system was built which addresses the aspects described before and that is based on the OpenDX visualization system. OpenDX visualization facilities constitute a great benefit to Tritom. The visual programming environment of OpenDX allows an easy definition of a sequence of processing steps thus fulfilling the requirement of an easy use by non-specialists on Computer Science. Also the possibility of incorporating external modules in a visual OpenDX program allows the researchers to tackle the aspect of reducing the long execution time of some processing steps. The longer processing steps of Tritom have been parallelized in two different types of hardware architectures (message-passing and shared-memory); the corresponding parallel programs can be easily incorporated in a sequence of processing steps defined in an OpenDX program. The benefits of our system are illustrated through an example where the tool is applied in the study of the sensitivity to crushing – and the implications thereof – of the reinforcements used in a functionally graded syntactic metallic foam.
Resumo:
Background: Human islet transplantation would offer a less invasive and more physiological alternative than whole pancreas transplantation and insulin injections respectively for the treatment of diabetes mellitus if islet graft survival can be improved. Initial recipient post-transplant insulin independence declines to <10% after 5 years. Factors contributing to graft failure include enzymatic disruption of the islet microenvironment during isolation, diabetogenic effects of immunosuppressants and metabolic stress resulting from slow revascularisation. Aims: To investigate the effect of co-culture in both static (SC) and rotational culture (RC) of BRINBDII beta-cells (Dl1) and human umbilical vein endothelial cells (HUVEC) on Dl1 insulin secretion; and the effect of a thiazolidinedione (TZD) on DII function and HUVEC proliferation. To assess the effect of culture media, SC, RC and a TZD on human islet morphology, insulin secretion and VEGF production. To initiate in vivo protocol development for assessment of revascularisation of human islet grafts. Methods: D11 cells were cultured +/-TZD and co-cultured with HUVEC +/-TZD in SC and RC. Dl1 insulin secretion was induced by static incubation with low glucose (1.67mM), high glucose (l6.7mM: and high glucose with 10mM theophylline (G+T) and determined by ELISA. HUVEC were cultured +/-TZD in SC and RC and proliferation was assessed by ATP luminescence assay and VEGF ELISA. D II and HUVEC morphology was determined by immunocytochemistry. Human islets were cultured in SC and RC in various media +/-TZD. Insulin secretion was determined as above and VEGF production by fluorescence immunocytochemistry (FI) and ELISA. Revascularisation of islet grafts was assessed by vascular corrosion cast and FI. Results: Dll cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and further improved by adding 10mM TZD. Untreated Dll/HUVEC co-cultures displayed significantly increased insulin secretion in response to 16.7mM and G+T over basal, again enhanced by RC and improved with 10mM TZD. 10mM TZD significantly increased HUVEC proliferation over control. Human islets maintained in medium 199 (mI99) in SC and RC exhibited comparable maintenance of morphology and insulin secretory profiles compared to islets maintained in RPMI, endothelial growth media and dedicated islet medium Miami# I. All cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and in certain instances further improved by adding 25mM TZD. TZD increased VEGF production and release as determined by ELISA. Post-implant vascular corrosion casts of mouse kidneys analysed by x-ray micro tomography indicates a possible TZD enhancement of microvessel growth via VEGF upregulation. Conclusions: D II /HUVEC co-culture in SC or RC does not alter the morphology of either cell type and supports D 11 function. TZD improves 0 I I and D I I/HUVEC SC and RC co-culture insulin secretion while increasing HUVEC proliferation. Human islet RC supports islet functional viability and structural integrity compared to SC while the addition of TZD occasionally further improves secretagogue induced insulin secretion. Expensive, 'dedicated' islet media showed no advantage over ml99 in terms of maintaining islet morphology or function. TZD upregulates VEGF in islets as shown by ELISA and suggested by x-ray micro tomography analysis of vascular corrosion casts. Maintenance of islets in RC and treatment with TZD prior to transplant may improve the functional viability and revascularisation rate of islet grafts.
Resumo:
Le succès écologique des organismes dépend principalement de leur phénotype. Une composante important du phénotype est la morphologie fonctionnelle car elle influence la performance d’un organisme donné dans un milieu donné et donc reflète son écologie. Des disparités dans la morphologie fonctionnelle ou dans le développement entre espèces peuvent donc mener à des différences écologiques. Ce projet évalue le rôle des mécanismes de variation morphologique dans la production de différences écologiques entre espèces au sein des poissons hybrides du complexe Chrosomus eos-neogaeus. En utilisant la microtomodensitométrie à rayons X et la morphométrie géométrique 3D, la forme des éléments des mâchoires est décrite pour comparer la variation morphologique et les différences développementales entre les membres du complexe C. eos neogaeus. Les hybrides présentent autant de variation phénotypique que les espèces parentales et présentent des phénotypes nouveaux, dit transgressifs. Les hybrides présentent aussi des différences marquées avec les espèces parentales dans leur allométrie et dans leur intégration phénotypique. Finalement, ceux-ci semblent être plastiques et en mesure de modifier leur phénotype pour occuper plusieurs environnements. L’entièreté de ces résultats suggère que des changements dans le développement des hybrides entraînent une différenciation phénotypique et écologique avec les espèces parentales.
Resumo:
Le succès écologique des organismes dépend principalement de leur phénotype. Une composante important du phénotype est la morphologie fonctionnelle car elle influence la performance d’un organisme donné dans un milieu donné et donc reflète son écologie. Des disparités dans la morphologie fonctionnelle ou dans le développement entre espèces peuvent donc mener à des différences écologiques. Ce projet évalue le rôle des mécanismes de variation morphologique dans la production de différences écologiques entre espèces au sein des poissons hybrides du complexe Chrosomus eos-neogaeus. En utilisant la microtomodensitométrie à rayons X et la morphométrie géométrique 3D, la forme des éléments des mâchoires est décrite pour comparer la variation morphologique et les différences développementales entre les membres du complexe C. eos neogaeus. Les hybrides présentent autant de variation phénotypique que les espèces parentales et présentent des phénotypes nouveaux, dit transgressifs. Les hybrides présentent aussi des différences marquées avec les espèces parentales dans leur allométrie et dans leur intégration phénotypique. Finalement, ceux-ci semblent être plastiques et en mesure de modifier leur phénotype pour occuper plusieurs environnements. L’entièreté de ces résultats suggère que des changements dans le développement des hybrides entraînent une différenciation phénotypique et écologique avec les espèces parentales.
Resumo:
This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.