6 resultados para Mibefradil
Resumo:
1 Voltage-operated calcium channel (VOCC) antagonists are effective antihypertensive and antianginal agents but they also depress myocardial contractility. 2 We compared four L-type calcium channel antagonists, felodipine, nifedipine, amlodipine and verapamil and a relatively T-type selective calcium channel antagonist, mibefradil, on human and rat isolated tissue assays to determine their functional vascular to cardiac tissue selectivity (V/C) ratio. 3 The V/C ratio was calculated as the ratio of the IC50 value of the antagonist that reduced (by 50%) submaximally contracted (K+ 62 mM) human small arteries from the aortic vasa vasorum (vascular, V) mounted in a myograph and the IC50 value of the antagonist that reduced (-)-isoprenaline (6 nM) submaximally stimulated human right atrial trabeculae muscle (cardiac, C) mounted in organ chambers. 4 The average pIC(50) Values (-log IC50 M) for the human vascular preparations were felodipine 8.30, nifedipine 7.78, amlodipine 6.64, verapamil 6.26 and mibefradil 6.22. The average pIC(50) values for the cardiac muscle were felodipine 7.21, nifedipine 6.95, verapamil 6.91, amlodipine 5.94, and mibefradil 4.61. 5 The V/C ratio calculated as antilog [pIC(50)V-pIC(50)C] is thus mibefradil 41, felodipine 12, nifedipine 7, amlodipine 5 and verapamil 0.2. 6 In rat small mesenteric arteries the pIC(50) values for the five drugs were similar to the values for human vasa vasorum arteries contracted by K+ 62 mM. However for methoxamine (10 mu M) contraction in the rat arteries the pIC(50) values were lower for felodipine 7.24 and nifedipine 6.23, but similar for verapamil 6.13, amlodipine 6.28 and mibefradil 5.91. 7 In conclusion in the human tissue assays, the putative T-channel antagonist mibefradil shows the highest vascular to cardiac selectivity ratio; some 3 fold higher than the dihydropyridine, felodipine, and some 200 fold more vascular selective than the phenylalkylamine, verapamil. This favourable vascular to cardiac selectivity for mibefradil, from a new chemical class of VOCC antagonist, may be explained by its putative T-channel selectivity.
Resumo:
1. Classical L-type voltage-operated calcium channel (VOCC) antagonists dilate blood vessels, depress myocardial contractility and slow cardiac conduction. 2. We compared four L-type VOCC antagonists and a novel tetralol derivative, mibefradil, reportedly 10-fold more selective for T- (transient) over L-type VOCC in two in vitro assays of human tissue, namely isolated small arteries from the aortic vasa vasorum in a myograph and right atrial trabeculae muscle under isometric force conditions. 3. In arteries contracted with K+ (62 mmol/L), the relaxation pIC(50) values for the VOCC antagonists felodipine, nifedipine, amlodipine, verapamil and mibefradil were 8.30, 7.78, 6.64, 6.26 and 6.22, respectively. In atrial trabeculae, the pIC(50) values to inhibit the inotropic response to a submaximal concentration of isoprenaline (6 nmol/L) for felodipine, nifedipine, verapamil, amlodipine and mibefradil were 7.21, 6.95, 6.91, 5.94 and 4.61, respectively. 4. Taking the anti-log (pIC(50) vessel - pIC(50) atrium) the vascular relaxation to cardiac depression potency ratios for mibefradil, felodipine, nifedipine, amlodipine and verapamil were 41, 12, 7, 5 and 0.22, respectively. 5. We conclude that, in human tissue assays, perhaps T- over L-type VOCC selectivity confers the most favourable vascular selectivity on mibefradil. Alternatively, splice variants of L-type VOCC in the vasculature (CaV1.2b) may be more sensitive to mibefradil than the splice variants in the heart (CaV1.2a).
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing small diameter sensory neurons. In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular acidification in our in vitro secretion assay. In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained current - in contrary of ASICs - played in our experimental conditions a predominant role in neurosecretion. In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same temperatures. We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood how ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is.
Resumo:
Background: Aberrant glomerular mesangial cell (MC) proliferation is a common finding in renal diseases. T-type calcium channels (T-CaCN) play an important role in the proliferation of a number of cell types, including vascular smooth muscle cells. The hypothesis that T-CaCN may play a role in the proliferation of human MC was investigated. Methods: The presence of T-CaCN in primary cultures of human MC was examined using voltage clamping and by RT-PCR. The effect of calcium channel inhibitors, and of siRNA directed against the Cav3.2 T-CaCN isoform, on MC proliferation was assessed using the microculture tetrazolium assay and nuclear BrdU incorporation. Results: Human MC express only the Cav3.2 T-CaCN isoform. Co-incubation of MC with a T-CaCN inhibitor (mibefradil, TH1177 or Ni2+) results in a concentration-dependent attenuation of proliferation. This effect cannot be attributed to direct drug-induced cytotoxicity or apoptosis and is not seen with verapamil, an L-type channel blocker. Transfection of MC with siRNA results in knockdown of T-CaCN Cav3.2 mRNA and a clear attenuation of MC proliferation. Conclusions: These results demonstrate for the first time an important role for T-CaCN in human MC proliferation. This could potentially lead to a novel therapy in the treatment of proliferative renal diseases.
Pitfalls when examining gap junction hemichannels: interference from volume-regulated anion channels
Resumo:
Human HeLa cells transfected with mouse connexin45 were used to explore the experimental conditions suitable to measure currents carried by gap junction hemichannels. Experiments were performed with a voltage-clamp technique and whole-cell recording. Lowering [Ca(2+)](o) from 2 mM to 20 nM evoked an extra current, I (m), putatively carried by Cx45 hemichannels. However, the variability of I (m) (size, voltage sensitivity, kinetics) suggested the involvement of other channels. The finding that growth medium in the incubator increased the osmolarity with time implied that volume-regulated anion channels (VRAC) may participate. This assumption was reinforced by the following observations. On the one hand, keeping [Ca(2+)](o) normal while the osmolarity of the extracellular solution was reduced from 310 to 290 mOsm yielded a current characteristic of VRAC; I (VRAC) activated/deactivated at negative/positive voltage, giving rise to the conductance functions g (VRAC,inst)=f(V (m)) (inst: instantaneous; V (m): membrane potential) and g (VRAC,ss)=f(V (m)) (ss: steady state). Moreover, it was reversibly inhibited by mibefradil, a Cl(-)channel blocker (binding constant K (d)=38 microM, Hill coefficient n=12), but not by the gap junction channel blocker 18alpha-glycyrrhetinic acid. On the other hand, minimizing the osmotic imbalance while [Ca(2+)](o) was reduced led to a current typical for Cx45 hemichannels; I (hc) activated/deactivated at positive/negative voltage. Furthermore, it was reversibly inhibited by 18alpha-glycyrrhetinic acid or palmitoleic acid, but not by mibefradil. Computations based on g (VRAC,ss)=f(V (m)) and g (hc,ss)=f(V (m)) indicated that the concomitant operation of both currents results in a bell-shaped conductance-voltage relationship. The functional implications of the data presented are discussed. Conceivably, VRAC and hemichannels are involved in a common signaling pathway.