994 resultados para Mg Alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conventional magnesium alloy, AZ91D, and two creep resistant magnesium alloys, developed for powertrain applications, MRI 153M and MRI 230D, are prepared by high pressure die casting. These alloys are tested for their creep behaviour in the continuous manner, as is the Current practice, and in the interrupted manner, which represents the real life Situation more closely. It is observed that the interrupted creep tests give rise to a primary creep appearing at the beginning of each cycle resulting in a higher average strain rate than that encountered in the continuous creep tests. Further, the shorter the cycle time, higher is the average strain rate in the interrupted creep tests. A higher average strain rate will give rise to a higher strain over the same period. This is attributed to the recovery taking place during the cooling and heating between two cycles. The effect of additional precipitation during interrupted creep tests depends on the nature of the precipitates. The additional precipitation of beta phase during the cooling and heating between two cycles increases the steady state strain rate in the AZ91D and MRI 153M alloys. whereas the additional precipitation of C36 phase during the cooling and heating between two cycles decreases the steady state strain rate in the MRI 230D alloy. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper examines the development of grain size during the recrystallization of magnesium alloys and the influence the grain size has on the mechanical response. In magnesium alloys grain refinement improves the strength-ductility balance. This simultaneous increase in both strength and ductility is ascribed to the impact the grain size has on deformation twinning. The mechanisms by which the grain size is established during hot working are shown to be conventional dynamic recrystallization followed by post-dynamic recrystallization. The role of alloying additionon both of these reactions is briefly considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent trial investigated the effect of solidification grain refinement of billet on the grain refinement and properties of alloy ZM20. It was found that even at levels of 0.4Mn, significant grain refinement could be obtained when 0.7Zr was added. At 0.2Mn grain sizes as low as 60μm were
obtained. Billets of Mg-2Zn-0.2Mn with four different grain sizes, due to different Zr and cooling rates were then cast via vertical direct chill casting and extruded conventionally. Benefits of grain refinement of the billet on extrusion were found to be a slight increase in the size of the operating
window, and a reduction of the grain size in the extrudate. However, the effect of the reduction in extrudate grain size due to refinement of the billet was small compared with the amount of grain refinement obtained due to recrystallisation on extrusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure and mechanical response of three extruded magnesium alloys, Mg-3Al-1Zn (AZ31), Mg-1.5Mn (Ml) and Mg-lMn-0.4RE (ME10) are examined. The tensile yield strength of ME10 was nearly half that of AZ31 and Ml. The tensile elongations were 6%, 11% and 19% for Ml, AZ31 and ME10, respectively. This range of properties is large and is attributed to the unique extrusion texture produced in ME10, and the high density of fine particles in Ml.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties of open-cellular magnesium alloys with three types of
geometric cell-structures, that is, a random round cell-structure (type A). a controlled diamond cell-structure for which the angle between the struts and the load direction is 45 degree (type B) and a controlled square cell-structure for which the angle between the struts and the loading direction is 0 degree (90 degree) (type C), are investigated by compressive tests. Results indicate that type C showed a higher collapse stress than the other two types. The collapse mechanism and the effects of the loading direction on collapse stress for the three types of magnesium alloys arc discussed from the viewpoint of bending, buckling and yielding of the struts. It is suggested that collapse for the open-cellular magnesium aHoys is associated with yielding of struts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium alloys show promise for application in formed components where weight saving is an advantage. In most instances forming is carried out at elevated temperatures. However, there are considerable gains to be had if forming can be carried out under ambient conditions. The present article outlines some of the difficulties that lie in the way of achieving this objective. The underlying metallurgical characteristics of the issues are considered and means for overcoming them are discussed. It is concluded that a combination of microstructure and texture control remains a promising strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrochemical approach to the formation of a protective surface film on Mg alloys immersed in the ionic liquid (IL), trihexyl(tetradecyl)phosphonium–bis 2,4,4-trimethylpentylphosphinate, was investigated in this work. Initially, cyclic voltammetry was used with the Mg alloy being cycled from OCP to more anodic potentials. EIS data indicate that, under these circumstances, an optimum level of protection was achieved at intermediate potentials (e.g., 0 or 0.25 V versus Ag/AgCl). In the second part of this paper, a small constant bias was applied to the Mg alloy immersed in the IL for extended periods using a novel cell design. This electrochemical cell allowed us to monitor in situ surface film formation on the metal surface as well as the subsequent corrosion behaviour of the metal in a corrosive medium. This apparatus was used to investigate the evolution of the surface film on an AZ31 magnesium alloy under a potential bias (between ±100 mV versus open circuit) applied for over 24 h, and the film evolution was monitored using electrochemical impedance spectroscopy (EIS). A film resistance was determined from the EIS data and it was shown that this increased substantially during the first few hours (independent of the bias potential used) with a subsequent decrease upon longer exposure of the surface to the IL. Preliminary characterization of the film formed on the Mg alloy surface using ToF-SIMS indicates that a multilayer surface exists with a phosphorous rich outer layer and a native oxide/hydroxide film underlying this. The corrosion performance of a treated AZ31 specimen when exposed to 0.1 M NaCl aqueous solution showed considerable improvement, consistent with electrochemical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea of bioabsorbable/biocorrodible stents has gained increasing attention in the last decade. Permanent coronary stents, traditionally made from 316L grade stainless steel, are routinely used for the treatment of blocked arteries. However, these stents can cause complications such as restenosis, thrombosis and the need for the patient to undergo prolonged antiplatelet therapy. Biodegradable metal stents provide an opportunity for the stent to remain in place for a period to ensure restoration of function and then degrade through a carefully controlled bio-corrosion process. Among the number of potentially suitable materials, Magnesium alloys have shown great promise as a stent material due to their non-toxicity [1] and the corrosion rates attainable in biological environments. However, a carefully controlled corrosion process is essential in order to avoid hyper hydrogen generation and the fatal consequences that follow. In addition uniform corrosion is a basic requirement to maintain the mechanical integrity and load bearing characteristics. Work being undertaken in our laboratories focuses on controlling the corrosion behaviour of magnesium in a simulated biological environment in the presence of protein. In the investigation reported here the Mg alloy has been examined using Scanning Electrochemical Microscope (SECM) to visualize the corrosion process and identify the corrosion pattern. Complementary bulk electrochemical techniques (EIS and potentiodynamic polarization) have been used to acquire kinetic and mechanistic information. Early results obtained by SECM have revealed the tendency towards pitting corrosion in the early stages which subsequently develops in to filiform corrosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work introduces a double inclusion elasto-plastic self-consistent (DI-EPSC) scheme for topologies in which crystals can contain subdomains (i.e. twins, etc.). The approach yields a direct coupling between the mechanical response of grains and their subdomains via a concentration relationship on mean fields derived from both the Eshelby and the Tanaka-Mori properties. The latent effect caused by twinning on the mechanical response is observed on both initially extruded and non-textured Mg alloys. For twinned grains, it is shown that deformation system activities and plastic strain distributions within twins drastically depend on the interaction with parent domains. Moreover, a quantitative study on the coupled influence of secondary slip activities on the material response is proposed. © 2014 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.