964 resultados para Metodologia box- jenkins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Contabilidade e Finanças Orientadora: Professora Doutora Patrícia Ramos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O Município de Marabá- PA, situado na região Amazônica, sudeste do Estado do Pará, sofre anualmente com eventos de enchentes, ocasionados pelo aumento periódico do rio Tocantins e pela situação de vulnerabilidade da população que reside em áreas de risco. A defesa civil estadual e municipal anualmente planeja e prepara equipes para ações de defesa no município. Nesta fase o monitoramento e previsão de eventos de enchentes são importantes. Portanto, com o objetivo de diminuir erros nas previsões hidrológicas para o Município de Marabá, desenvolveu-se um modelo estocástico para previsão de nível do rio Tocantins, baseado na metodologia de Box e Jenkins. Utilizou os dados de níveis diários observados nas estações hidrológicas de Marabá e Carolina e Conceição do Araguaia da Agência Nacional de Águas (ANA), do período de 01/12/ 2008 a 31/03/2011. Efetuou-se o ajustamento de três modelos (Mt, Nt e Yt), através de diferentes aplicativos estatísticos: o SAS e o Gretl, usando diferentes interpretações do comportamento das séries para gerar as equações dos modelos. A principal diferença entre os aplicativos é que no SAS usa o modelo de função de transferência na modelagem. Realizou-se uma classificação da variabilidade do nível do rio, através da técnica dos Quantis para o período de 1972 a 2011, examinando-se apenas as categorizações de níveis ACIMA e MUITO ACIMA do normal. Para análise de impactos socioeconômicos foram usados os dados das ações da Defesa Civil Estado do Pará nas cheias de 2009 e 2011. Os resultados mostraram que o número de eventos de cheias com níveis MUITO ACIMA do normal, geralmente, podem estar associados a eventos de La Niña. Outro resultado importante: os modelos gerados simularam muito bem o nível do rio para o período de sete dias (01/04/2011 a 07/04/2011). O modelo multivariado Nt (com pequenos erros) representou o comportamento da série original, subestimando os valores reais nos dias 3, 4 e 5 de abril de 2011, com erro máximo de 0,28 no dia 4. O modelo univariado (Yt) teve bons resultados nas simulações com erros absolutos em torno de 0,12 m. O modelo com menor erro absoluto (0,08m) para o mesmo período foi o modelo Mt, desenvolvido pelo aplicativo SAS, que interpreta a série original como sendo não linear e não estacionária. A análise quantitativa dos impactos fluviométricos, ocorridos nas enchentes de 2009 e 2011 na cidade de Marabá, revelou em média que mais de 4 mil famílias sofrem com estes eventos, implicado em gastos financeiros elevados. Logo, conclui-se que os modelos de previsão de níveis são importantes ferramentas que a Defesa Civil, utiliza no planejamento e preparo de ações preventivas para o município de Marabá.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A capacidade de prever precisamente a produção de energia renovável é extremamente relevante tanto do ponto de vista económico como para controlo da estabilidade da rede elétrica. Para tal, é necessário realizar uma previsão das condições meteorológicas adjacentes à produção de energia a partir de fontes de energia renovável. Vários modelos de previsão têm sido utilizados para este fim, desde modelos atmosféricos a modelos estatísticos, onde se destacam métodos como Redes Neuronais Artificiais ou a Metodologia de Box & Jenkins. Lidar com dados meteo-rológicos pode revelar algumas complicações devido à possível instabilidade das medições, com-plicando o desenvolvimento de um modelo de previsão adequado. Neste trabalho pretende-se realizar a previsão de produção a partir de uma instalação fotovoltaica e um gerador eólico através do uso da Metodologia de Box & Jenkins para desenvolver um modelo capaz de realizar a previsão das condições meteorológicas para diferentes horizontes temporais medidos no topo do edifício do Departamento de Engenharia Eletrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), e usando esses valores para calcular a produção de energia. Os resultados obtidos revelaram um bom desempenho quando comparados os resultados previstos com os resultados reais para o mesmo período de tempo, garantindo que podem ser utilizados para calcular a previsão de potência produzida através das instalações presentes no local e encorajando novos estudos no tema.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Técnicas de análises de séries temporais são utilizadas para caracterizar o comportamento de fenômenos naturais no domínio do tempo. Neste artigo, segundo a metodologia proposta por Box et al. (1994), 125 observações do Enhanced Vegetation Index (EVI) foram analisadas. Os valores modelados correspondem às variações temporais ocorridas no dossel florestal da reserva biológica de Sooretama, localizada ao Norte do Estado do Espírito Santo, no Município de Linhares. Os resultados indicaram que a metodologia foi adequada. Os resíduos do modelo ajustado são não correlacionados com distribuição normal, média zero e variância s². Com o menor valor do Critério de Informação de Akaike (AIC) -570,51, o modelo ajustado foi o Sazonal Auto-Regressivo Integrado de Médias Móveis (1,0,1)(1,0,1)12.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A maioria dos métodos de síntese e sintonia de controladores, bem como métodos de otimização e análise de processos necessitam de um modelo do processo em estudo. A identificação de processos é portanto uma área de grande importância para a engenharia em geral pois permite a obtenção de modelos empíricos dos processos com que nos deparamos de uma forma simples e rápida. Mesmo não utilizando leis da natureza, os modelos empíricos são úteis pois descrevem o comportamento específico de determinado processo. Com o rápido desenvolvimento dos computadores digitais e sua larga aplicação nos sistemas de controle em geral, a identificação de modelos discretos foi amplamente desenvolvida e empregada, entretanto, modelos discretos não são de fácil interpretação como os modelos contínuos pois a maioria dos sistema com que lidamos são de representação contínua. A identificação de modelos contínuos é portanto útil na medida que gera modelos de compreensão mais simples. A presente dissertação estuda a identificação de modelos lineares contínuos a partir de dados amostrados discretamente. O método estudado é o chamado método dos momentos de Poisson. Este método se baseia em uma transformação linear que quando aplicada a uma equação diferencial ordinária linear a transforma em uma equação algébrica evitando com isso a necessidade do cálculo das derivadas do sinais de entrada e saída Além da análise detalhada desse método, onde demonstramos o efeito de cada parâmetro do método de Poisson sobre o desempenho desse, foi realizado também um estudo dos problemas decorrentes da discretização de sinais contínuos, como por exemplo o efeito aliasing decorrente da utilização de tempos de amostragem muito grandes e de problemas numéricos da identificação de modelos discretos utilizando dados com tempos de amostragem muito pequenos de forma a destacar as vantagens da identificação contínua sobre a identificação discreta Também foi estudado um método para compensar a presença de offsets nos sinais de entrada e saída, método esse inédito quando se trata do método dos momentos de Poisson. Esse trabalho também comprova a equivalência entre o método dos momentos de Poisson e uma metodologia apresentada por Rolf Johansson em um artigo de 1994. Na parte final desse trabalho são apresentados métodos para a compensação de erros de modelagem devido à presença de ruído e distúrbios não medidos nos dados utilizados na identificação. Esses métodos permitem que o método dos momentos de Poisson concorra com os métodos de identificação discretos normalmente empregados como por exemplo ARMAX e Box-Jenkins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabalho compara modelos de séries temporais para a projeção de curto prazo da inflação brasileira, medida pelo Índice de Preços ao Consumidor Amplo (IPCA). Foram considerados modelos SARIMA de Box e Jenkins e modelos estruturais em espaço de estados, estimados pelo filtro de Kalman. Para a estimação dos modelos, foi utilizada a série do IPCA na base mensal, de março de 2003 a março de 2012. Os modelos SARIMA foram estimados no EVIEWS e os modelos estruturais no STAMP. Para a validação dos modelos para fora da amostra, foram consideradas as previsões 1 passo à frente para o período de abril de 2012 a março de 2013, tomando como base os principais critérios de avaliação de capacidade preditiva propostos na literatura. A conclusão do trabalho é que, embora o modelo estrutural permita, decompor a série em componentes com interpretação direta e estudá-las separadamente, além de incorporar variáveis explicativas de forma simples, o desempenho do modelo SARIMA para prever a inflação brasileira foi superior, no período e horizonte considerados. Outro importante aspecto positivo é que a implementação de um modelo SARIMA é imediata, e previsões a partir dele são obtidas de forma simples e direta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The national truck fleet has expanded strongly in recent decades. However, due to fluctuations in the demand that the market is exposed, it needed up making more effective strategic decisions of automakers. These decisions are made after an evaluation of guaranteed sales forecasts. This work aims to generate an annual forecast of truck production by Box and Jenkins methodology. They used annual data for referring forecast modeling from the year 1957 to 2014, which were obtained by the National Association of Motor Vehicle Manufacturers (Anfavea). The model used was Autoregressive Integrated Moving Average (ARIMA) and can choose the best model for the series under study, and the ARIMA (2,1,3) as representative for conducting truck production forecast

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The national truck fleet has expanded strongly in recent decades. However, due to fluctuations in the demand that the market is exposed, it needed up making more effective strategic decisions of automakers. These decisions are made after an evaluation of guaranteed sales forecasts. This work aims to generate an annual forecast of truck production by Box and Jenkins methodology. They used annual data for referring forecast modeling from the year 1957 to 2014, which were obtained by the National Association of Motor Vehicle Manufacturers (Anfavea). The model used was Autoregressive Integrated Moving Average (ARIMA) and can choose the best model for the series under study, and the ARIMA (2,1,3) as representative for conducting truck production forecast

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior