1000 resultados para Methylmalonic acid
Homocysteine and methylmalonic acid as indicators of folate and vitamin B12 deficiency in pregnancy.
Resumo:
Lawsonia intracellularis is the causative agent of porcine proliferative enteropathy. The clinical presentation can be acute (i.e. proliferative hemorrhagic enteropathy, PHE), chronic (i.e. porcine intestinal adenomatosis, PIA) or subclinical. In humans with chronic enteropathies, low serum folate (vitamin B(9)) and cobalamin (vitamin B(12)) concentrations have been associated with increased serum concentrations of homocysteine and methylmalonic acid (MMA), which reflect the availability of both vitamins at the cellular level. The aim of this study was to evaluate serum folate, cobalamin, homocysteine and MMA concentrations in serum samples from pigs with PHE, PIA or subclinical L. intracellularis infection, and in negative controls. Serum folate, cobalamin, homocysteine and MMA concentrations differed significantly among pigs in the PHE, PIA, subclinical and negative control groups. Serum folate concentrations in the PHE and PIA groups were lower than in the subclinical and negative control groups, while serum cobalamin concentrations were lower in the PIA group than in other groups. Serum concentrations of homocysteine were higher in the PHE, PIA and subclinical groups than in the negative control group. Serum concentrations of MMA were higher in the subclinical and PIA groups than in the control group. These data suggest that pigs infected with L. intracellularis have altered serum cobalamin, folate, homocysteine and MMA concentrations.
Resumo:
Methylmalonic acidemia is one of the most prevalent inherited metabolic disorders involving neurological deficits. In vitro experiments, animal model studies and tissue analyses from human patients suggest extensive impairment of mitochondrial energy metabolism in this disease. This review summarizes changes in mitochondrial energy metabolism occurring in methylmalonic acidemia, focusing mainly on the effects of accumulated methylmalonic acid, and gives an overview of the results found in different experimental models. Overall, experiments to date suggest that mitochondrial impairment in this disease occurs through a combination of the inhibition of specific enzymes and transporters, limitation in the availability of substrates for mitochondrial metabolic pathways and oxidative damage.
Resumo:
In the UK vitamin B-12, deficiency occurs in approximately 20% of adults aged >65 years. This incidence is significantly higher than that among the general population. The reported incidence invariably depends on the criteria of deficiency used, and in fact estimates rise to 24% and 46% among free-living and institutionalised elderly respectively when methylmalonic acid is used as a marker of vitamin B-12 status. The incidence of, and the criteria for diagnosis of, deficiency have drawn much attention recently in the wake of the implementation of folic acid fortification of flour in the USA. This fortification strategy has proved to be extremely successful in increasing folic acid intakes pre-conceptually and thereby reducing the incidence of neural-tube defects among babies born in the USA since 1998. However, in successfully delivering additional folic acid to pregnant women fortification also increases the consumption of folic acid of everyone who consumes products containing flour, including the elderly. It is argued that consuming additional folic acid (as 'synthetic' pteroylglutamic acid) from fortified foods increases the risk of 'masking' megaloblastic anaemia caused by vitamin B-12 deficiency. Thus, a number of issues arise for discussion. Are clinicians forced to rely on megaloblastic anaemia as the only sign of possible vitamin B-12 deficiency? Is serum vitamin B-12 alone adequate to confirm vitamin B-12 deficiency or should other diagnostic markers be used routinely in clinical practice? Is the level of intake of folic acid among the elderly (post-fortification) likely to be so high as to cure or 'mask' the anaemia associated with vitamin B-12 deficiency?.
Resumo:
Recent researches have investigated the factors that determine the maternal risk for Down syndrome (DS) in young woman. In this context, some studies have demonstrated the association between polymorphisms in genes involved on folate metabolism and the maternal risk for DS. These polymorphisms may result in abnormal folate metabolism and methyl deficiency, which is associated with aberrant chromosome segregation leading to trisomy 21. In this study, we analyzed the influence of the polymorphism C1420T in Serine hydroxymethyltransferase (SHMT) gene on maternal risk for DS and on metabolites concentrations of the folate pathway (serum folate and plasma homocysteine and methylmalonic acid). The study group was composed by 105 mothers with DS children (case group) and 185 mothers who had no children with DS (control group). The genotype distribution did not show significant statistical difference between case and control mothers (P = 0.24) however a protective effect between genotypes CC (P = 0.0002) and CT (P < 0.0001) and maternal risk for DS was observed. Furthermore, the SHMT C1420T polymorphism (rs1979277) does not affect the concentration of metabolites of folate pathway in our DS mothers. In conclusion, our data showed a protective role for the genotypes SHMT CC and CT on maternal risk for DS. The concentrations of metabolites of folate pathway did not differ significantly between the genotypes SHMT.
Resumo:
Individuals with Down syndrome (DS) carry three copies of the Cystathionine beta-synthase (C beta S) gene. The increase in the dosage of this gene results in an altered profile of metabolites involved in the folate pathway, including reduced homocysteine (Hcy), methionine, S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Furthermore, previous studies in individuals with DS have shown that genetic variants in genes involved in the folate pathway influence the concentrations of this metabolism's products. The purpose of this study is to investigate whether polymorphisms in genes involved in folate metabolism affect the plasma concentrations of Hcy and methylmalonic acid (MMA) along with the concentration of serum folate in individuals with DS. Twelve genetic polymorphisms were investigated in 90 individuals with DS (median age 1.29 years, range 0.07-30.35 years; 49 male and 41 female). Genotyping for the polymorphisms was performed either by polymerase chain reaction (PCR) based techniques or by direct sequencing. Plasma concentrations of Hcy and MMA were measured by liquid chromatography-tandem mass spectrometry as previously described, and serum folate was quantified using a competitive immunoassay. Our results indicate that the MTHFR C677T, MTR A2756G, TC2 C776G and BHMT G742A polymorphisms along with MMA concentration are predictors of Hcy concentration. They also show that age and Hcy concentration are predictors of MMA concentration. These findings could help to understand how genetic variation impacts folate metabolism and what metabolic consequences these variants have in individuals with trisomy 21.
Resumo:
We report the case of a 7 month-old girl that presented with acute anemia, generalized muscular hypotonia and failure to thrive. Laboratory evaluation revealed cobalamin deficiency, due to a vegan diet of the mother. The clinical triad of an acquired floppy baby syndrome with megaloblastic anemia and failure to thrive is pathognomic for infantile cobalamin deficiency. Neurological abnormalities are often irreversible and may be associated with delayed myelinization in the MRI. A normal cobalamin level in maternal serum and absence of anemia do not exclude subclinical deficiency. If cobalamin deficiency is suspected, e.g. in pregnant women on vegan diet, urinary methylmalonic acid excretion and plasma homocysteine levels should be determined and cobalamin substitution should be started at an early stage to avoid potentially irreversible damage of the fetus.
Resumo:
BACKGROUND Increased serum concentrations of homocysteine (HCY) and methylmalonic acid (MMA), the 2 main cobalamin-dependent metabolites, as well as decreased serum albumin and canine alpha1 -proteinase inhibitor (cα1 -PI) concentrations have previously been described in hypocobalaminemic dogs with gastrointestinal disease. However, no studies have been conducted to evaluate potential relationships between these serum biomarkers. OBJECTIVE The aim of this study was to evaluate the relationship between HCY and MMA, 2 cobalamin-dependent metabolites, and both serum albumin and cα1 -PI concentrations in hypocobalaminemic dogs. METHODS Serum samples from 285 dogs including 7 different breeds (Beagle, Boxer, Cocker Spaniel, German Shepherd, Labrador Retriever, Chinese Shar-Pei, and Yorkshire Terrier) with hypocobalaminemia were used. Serum HCY, MMA, albumin, and cα1 -PI concentrations were determined. RESULTS There was a significant correlation between serum HCY and albumin concentrations, as well as serum HCY and cα1 -PI concentrations (ρ = 0.62 and ρ = 0.37, respectively; P < .0001). No correlations were observed between serum MMA and albumin concentrations, or cα1 -PI concentrations (ρ = 0.01 and ρ = 0.08, respectively; P > .05). In addition, significant breed-specific correlations were observed between serum MMA and albumin concentrations in German Shepherds, and serum HCY and MMA concentrations in Chinese Shar-Peis with hypocobalaminemia. CONCLUSIONS This study shows a correlation between serum albumin and cα1 -PI and HCY concentrations, but not with serum MMA concentration in dogs with hypocobalaminemia. In addition, significant breed-specific correlations were observed between serum MMA and albumin concentrations in German Shepherds, as well as serum HCY and MMA concentrations in Chinese Shar-Peis, emphasizing the unique metabolic interactions in those dog breeds affected by hypocobalaminemia.
Resumo:
Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.