984 resultados para Methanol dehydrogenation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A density functional theory study of methanol dehydrogenation over stepped Pt(2 1 1) surfaces without and with Ru modification was carried out to understand fuel catalytic reactions on Pt-based catalysts. Two main pathways of the CH3OH dehydrogenation were examined: the O–H pathway which was initiated by O–H bond scission to form the methoxy (CH3O) intermediate followed by sequential cleavage of C–H bonds to CO, and the C–H pathway which was initiated by C–H bond scission to form the hydroxymethyl (CH2OH) followed by two C–H bond cleavages to COH and then CO. Possible crossover reactions between the O–H and C–H pathways were also computed. Compared to flat Pt(1 1 1), stepped Pt(2 1 1) increases the adsorption energies of intermediates, making no significant contribution to decreasing the reaction barriers of most elementary steps involved, except in the first hydrogen scission. However, on the Ru-modified surface, a significant reduction was found in reaction barriers for the first step of the C–H bond scission and a number of further dehydrogenation steps crossing over to the O–H pathway, with the most facile paths identified. Our data reveals the complexity of methanol catalytic reaction processes at the atomic level and contributes to a fundamental understanding of fuel reactions on Pt-based catalysts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural and textural studies of a CuO/TiO2 System modified by cerium oxide were conducted using Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N-2 absorption (BET specific surface area). The introduction of a minor amount of CeO2 (Ce0.09Ti0.82O1.91CU0.09 sample) resulted in a material with the maximum surface area value. The results of Raman spectroscopy revealed the presence of only two crystalline phases, TiO2 anatase and CeO2 cerianite, with well-dispersed copper species. TEM micrographs showed a trend toward smaller TiO2 crystallites when the cerium oxide content was increased. The XPS analysis indicated the rise of a second peak in Ti 2p spectra with the increasing amount of CeO2 located at higher binding energies than that due to the Till in a tetragonal symmetry. The CuO/TiO2 system modified by CeO2 displayed a superior performance for methanol dehydrogenation than the copper catalyst supported only on TiO2 or CeO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A structural study of CuO supported on a CeO2-TiO2 system was undertaken using X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques. The results of XRD revealed the presence of only two phases, TiO2 anatase and CeO2 cerianite. A trend towards smaller TiO2 crystallites was observed when cerium content increased. When the amount of cerium increased, Ti K-edge XANES analysis showed an increasing distortion of Ti sites. The results of Ce LIII-edge EXAFS showed that Ce atoms are coordinated by eight oxygen atoms at 2.32 Å. For the sample containing a small amount of cerium, the EXAFS analysis indicated that the local structure around Ce atoms was highly distorted. The catalysts presented quite different Cu K-edge XANES spectra compared to the spectra of the CuO and Cu2O reference compounds. The Cu-O mean bond length was close to that of the CuO and the Cu atoms in the catalysts are surrounded by approximately four oxygen atoms in their first shell. Copper supported on the ceria-modified titania support catalysts displayed a better performance in the methanol dehydrogenation when compared to copper supported only on titania or on ceria. © 2002 Plenum Publishing Corporation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the commercially available titanium dioxide (Hombikat UV 100). The properties of the prepared photocatalysts were investigated by means of the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-visible diffuse spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity of pure and Pt-loaded TiO2 was investigated employing the photocatalytic oxidation and dehydrogenation of methanol. The results of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding bare TiO2 for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a significant improvement of the photocatalytic activity of TiO2. This beneficial effect was attributed to an increased separation of the photogenerated electron-hole charge carriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel-containing catalysts are developed to oligomerize light olefins. Two nickel-containing zincosilicates (Ni-CIT-6 and Ni-Zn-MCM-41) and two nickel-containing aluminosilicates (Ni-HiAl-BEA and Ni-USY) are synthesized as catalysts to oligomerize propylene into C3n (C6 and C9) products. All catalysts oligomerize propylene, with the zincosilicates demonstrating higher average selectivities to C3n products, likely due to the reduced acidity of the Zn heteroatom.

To test whether light alkanes can be incorporated into this oligomerization reaction, a supported homogeneous catalyst is combined with Ni-containing zincosilicates. The homogeneous catalyst is included to provide dehydrogenation/hydrogenation functions. When this tandem catalyst system is evaluated using a propylene/n-butane feed, no significant integration of alkanes are observed.

Ni-containing zincosilicates are reacted with 1-butene and an equimolar propylene/1-butene mixture to study other olefinic feeds. Further, other divalent metal cations such as Mn2+, Co2+, Cu2+, and Zn2+ are exchanged onto CIT-6 samples to investigate stability and potential use for other reactions. Co-CIT-6 oligomerizes propylene, albeit less effectively than Ni-CIT-6. The other M-CIT-6 samples, while not able to oligomerize light olefins, may be useful for other reactions, such as deNOx.

Molecular sieves are synthesized, characterized, and used to catalyze the methanol-to-olefins (MTO) reaction. The Al concentration in SSZ-13 samples is varied to investigate the effect of Al number on MTO reactivity when compared to a SAPO-34 sample with only isolated Si Brønsted acid sites. These SSZ-13 samples display reduced transient selectivity behavior and extended reaction lifetimes as Si/Al increases; attributable to fewer paired Al sites. MTO reactivity for the higher Si/Al SSZ-13s resembles the SAPO-34 sample, suggesting that both catalysts owe their stable reaction behavior to isolated Brønsted acid sites.

Zeolites CHA and RHO are prepared without the use of organic structure-directing agents (OSDAs), dealuminated by steam treatments (500°C-800°C), and evaluated as catalysts for the MTO reaction. The effects of temperature and steam partial pressure during steaming are investigated. X-ray diffraction (XRD) and Ar physisorption show that steaming causes partial structural collapse of the zeolite, with degradation increasing with steaming temperature. 27Al MAS NMR spectra of steamed materials reveal the presence of tetrahedral, pentacoordinate, and hexacoordinate aluminum.

Proton forms of as-synthesized CHA (Si/Al=2.4) and RHO (Si/Al=2.8) rapidly deactivate under MTO testing conditions (400°C, atmospheric pressure). CHA samples steamed at 600°C performed best among samples tested, showing increased olefin selectivities and catalyst lifetime. Acid washing these steamed samples further improved activity. Reaction results for RHO were similar to CHA, with the RHO sample steamed at 800°C producing the highest light olefin selectivities. Catalyst lifetime and C2-C3 olefin selectivities increase with increasing reaction temperature for both CHA-type and RHO-type steamed samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bifunctionalized TiO2 film containing a dye-sensitized zone and a catalysis zone is designed for visible-light photocatalytic reduction of CO2 to chemicals continuously. Charge separation can be accomplished with electron transferring to catalysis zone and positive charge transforming to anode. Highly efficient conversion of CO2 to formic acid, formaldehyde, and methanol is achieved through the transferring electrons on conduction bands (CB) of TiO2. Reduction of CO2 and O2 evolution take place in separated solutions on different catalysts. The separated solution carried out in this photo-reactor system can avoid CO2 reduction products being oxidized by anode. The yields of reduction products were enhanced remarkably by external electrical power. This study provides not only a new photocatalytic system but also a potential of renewable energy source via carbon dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane gas has been identified as the most destructive greenhouse gas (Liu et al., 2004). It was reported that the global warming potential of methane per molecule relative to CO2 is approximately 23 on a 100-year timescale or 62 over a 20-year period (IPCC, 2001). Methane has high C-H bond energy of about 439 kJ/mol and other higher alkanes (or saturated hydrocarbons) also have a very strong C-C and C-H bonds, thus making their molecules to have no empty orbitals of low energy or filled orbitals of high energy that could readily participate in chemical reactions as is the case with unsaturated hydrocarbons such as olefins and alkynes (Crabtree, 1994; Labinger & Bercaw, 2002)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, ab initio density functional calculations were performed to explore the effect of surface lithium vacancies on the initial dehydrogenation kinetics of lithium borohydride. We found that some B−H bonds in neighboring BH4-1 complexes around the vacancy became elongated (weakened). The activation barriers for the recombination of H atoms to form H2 were decreased from 3.64 eV for the stoichiometrically complete LiBH4(010) surface to 1.53 and 0.23 eV in the presence of mono- and di-vacancies, respectively. Our results indicate that the creation of Li vacancies may play a critical role in accelerating the dehydrogenation kinetics of LiBH4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio density functional theory calculations are performed to study the experimentally observed catalytic role of V2O5 in the recycling of hydrogen in magnesium hydride. We find that the Mg–H bond length becomes elongated when MgH2 clusters are positioned on single, two, and three coordinated oxygen sites (O1, O2, and O3) on the V2O5(001) surface. Molecular hydrogen is predicted to spontaneously form at the hole site on the V2O5(001) surface. Additionally, the activation barrier for the dissociation of hydrogen on V-doped Mg(0001) surface is 0.20 eV, which is only 1/5 of that on pure Mg(0001) surface. Our results indicate that oxygen sites on the V2O5(001)surface and the V dopant in Mg may be important facilitators for dehydrogenation and rehydrogenation, respectively. The understanding gained here will aid in the rational design and development of Mg-based hydrogen storage materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectra are reported of methanol adsorbed at 295 K on reduced Cu/SiO2 and on Cu/SiO2 which had been preoxidised by exposure to excess nitrous oxide. Methanol was chemisorbed on reduced Cu/SiO2 to give methoxy species on both silica and copper, gave a trace of formate on copper via reaction with residual surface oxygen, and was weakly adsorbed at SiOH sites on the silica support. Heating the adsorbed species at 393 K led to the loss of methoxy groups on copper and the concomitant formation of a bidentate surface formate. Heating reduced Cu/SiO2 in methanol at 538 K initially gave both gaseous and adsorbed (on Cu) methyl formate which subsequently decomposed to CO and hydrogen. The reactions of methanol with oxidised Cu/SiO2 were similar to those for the reduced catalyst although surface oxygen promoted the formation of surface methoxy groups on copper. Subsequent heating at 393 K led first to unidentate formate before the appearance of bidentate formate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism