37 resultados para Methanogens
Resumo:
OBJECTIVE: This study ascertains the relative contributions of genetics and environment in determining methane emission in humans and rats. There is considerable interest in the factors determining the microbial species that inhabit the colon. Methanogens, which are archaebacteria, are an easily detected colonic luminal bacteria because they respire methane. They are present in some but not all human colons and lower animal hindguts. Opinion varies on the nature of the factors influencing this ecology with some studies proposing the existence of host genetic influences. METHODS: Methane emission was measured in human twin pairs by gas chromatography, and structural equation modeling was used to determine the proportion of genetic and environmental determinants. The importance of the timing of environmental effects and rat strain on the trait of methane emission were ascertained by experiments with cohabiting methanogenic and nonmethanogenic rats. RESULTS: Analysis of breath samples from 274 adolescent twin pairs and their families indicated that the major influences on the trait of methane emission are the result of shared (53%, 95% confidence interval 39-61) and unique environmental (47%, 95% confidence interval 38-56) effects. No significant autosomal genetic effects were detected, but as observed in other studies, men (37%) were less likely to excrete methane in their breath than women (63%). Investigation of methane emission in rats indicated that environmental effects in this animal are most potent during the weaning period, with stable gut microbial ecology thereafter for some but not all rat strains. CONCLUSIONS: These results are consistent with shared and unique environmental factors being the main determinants of the ecology of this colonic microbe. (Am J Gastroenterol 2000;95:2872-2879. (C) 2000 by Am. Coll. of Gastroenterology).
Resumo:
Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogasa renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria, SRB). This review gives an overview of previous research and pilot-scale studies that shed some light on the effects of sulphate and heavy metals on methanogenesis. Despite the numerous studies on this subject, comparison is not always possible due to differences in the experimental conditions used and parameters explained. An overview of the possible benefits of methanogens and SRB co-habitation is also covered. Small amounts of sulphide produced by SRB can precipitate with metals, neutralising the negative effects of sulphide accumulation and free heavy metals on methanogenesis. Knowledge on how to untangle and balance sulphate reduction and methanogenesis is crucial to take advantage of the potential for the utilisation of biogenic sulphide as a metal detoxification agent with minimal loss in methane production in anaerobic digesters.
Resumo:
In this work the archaea and eubacteria community of a hypersaline produced water from the Campos Basin that had been transported and discharged to an onshore storage facility was evaluated by 16S recombinant RNA (rRNA) gene sequence analysis. The produced water had a hypersaline salt content of 10 (w/v), had a carbon oxygen demand (COD) of 4,300 mg/l and contains phenol and other aromatic compounds. The high salt and COD content and the presence of toxic phenolic compounds present a problem for conventional discharge to open seawater. In previous studies, we demonstrated that the COD and phenolic content could be largely removed under aerobic conditions, without dilution, by either addition of phenol degrading Haloarchaea or the addition of nutrients alone. In this study our goal was to characterize the microbial community to gain further insight into the persistence of reservoir community members in the produced water and the potential for bioremediation of COD and toxic contaminants. Members of the archaea community were consistent with previously identified communities from mesothermic reservoirs. All identified archaea were located within the phylum Euryarchaeota, with 98 % being identified as methanogens while 2 % could not be affiliated with any known genus. Of the identified archaea, 37 % were identified as members of the strictly carbon-dioxide-reducing genus Methanoplanus and 59 % as members of the acetoclastic genus Methanosaeta. No Haloarchaea were detected, consistent with the need to add these organisms for COD and aromatic removal. Marinobacter and Halomonas dominated the eubacterial community. The presence of these genera is consistent with the ability to stimulate COD and aromatic removal with nutrient addition. In addition, anaerobic members of the phyla Thermotogae, Firmicutes, and unclassified eubacteria were identified and may represent reservoir organisms associated with the conversion hydrocarbons to methane.
Resumo:
Background and aims-The colons of patients with pneumatosis cystoides coli produce excessive H-2. Exposure to alkyl halides could explain this. Six consecutive patients who had pneumatosis cystoides coli while taking chloral hydrate (1-5+ g/day) are reported. Patients 2 and 3 were investigated after they had ceased chloral hydrate treatment. One produced methane, the other did not. (Pneumatosis cystoides coli patients are non-methanogenic according to the literature.) Both had overnight fasting breath H-2 of less than 10 ppm. A literature review disclosed just one patient who was using chloral at the time of diagnosed pneumatosis cystoides coli, but an epidemic of the disease in workers exposed to trichloroethylene. Methods-(i) In vitro experiments with human faeces: chloral or closely related alkyl halides were added to anaerobic faecal cultures derived from four methane-producing and three non-methanogenic human subjects. H-2 and CH4 gases were measured. (ii) In vivo animal experiment: chloral hydrate was added to drinking water of four Wistar rats, and faecal HI compared with control rats. Results-Alkyl halides increased H-2 up to 900 times in methanogenic and 10 times in non-methanogenic faecal cultures. The K-i of chloral was 0.2 mM. Methanogenesis was inhibited in concert with the increase in net H-2. In the rat experiment, chloral hydrate increased H-2 10 times, but did not cause pneumatosis. Conclusions-Chloral and trichloroethylene are alkyl halides chemically similar to chloroform, a potent inhibitor of H-2 consumption by methanogens and acetogens. These bacteria are the most important H-2-consuming species in the colon. It is postulated that exposure to these alkyl halides increases net H-2 production, which sets the scene for counterperfusion supersaturation and the formation of gas cysts. In recent times, very low prescribing rates for chloral have caused primary pneumatosis cystoides to become extremely rare. As with primary pneumatosis, secondary pneumatosis cystoides, which occurs if there is small bowel bacterial overgrowth distal to a proximally located gut obstruction, is predicted by counterperfusion supersaturation. Inherent unsaturation due to metabolism of O-2 is a safety factor, which could explain why gas bubbles do not form more often in tissue with high H-2 tension.
Resumo:
The metabolism of methanogenic archaea is inhibited by 2-bromoethanesulfonate (BES). Methane production is blocked because BES is an analog of methyl-coenzyme M and competes with this key molecule in the last step of methanogenesis. For this reason, BES is commonly used in several studies to avoid growth of acetoclastic and hydrogenotrophic methanogens [1]. Despite its effectiveness as methanogenic inhibitor, BES was found to alter microbial communities’ structure, to inhibit the metabolism of non-methanogenic microorganisms and to stimulate homoacetogenic metabolism [2,3]. Even though sulfonates have been reported as electron acceptors for sulfate- and sulfite-reducing bacteria (SRB), only one study described the reduction of BES by complex microbial communities [4]. In this work, a sulfate-reducing bacterium belonging to Desulfovibrio genus (98 % identity at the 16S rRNA gene level with Desulfovibrio aminophilus) was isolated from anaerobic sludge after several successive transfers in anaerobic medium containing BES as sole substrate. Sulfate was not supplemented to the anaerobic growth medium. This microorganism was able to grow under the following conditions: on BES plus H2/CO2 in bicarbonate buffered medium; on BES without H2/CO2 in bicarbonate buffered medium; and on BES in phosphate buffered medium. The main products of BES utilization were sulfide and acetate, the former was produced by the reduction of sulfur from the sulfonate moiety of BES and the latter likely originated from the carbon backbone of the BES molecule. BES was found, in this study, to represent not only an alternative electron acceptor but also to serve as electron donor, and sole carbon and energy source, supporting growth of a Desulfovibrio sp. obtained in pure culture. This is the first study that reports growth of SRB with BES as electron donor and electron acceptor, showing that the methanogenic inhibitor is a substrate for anaerobic growth.
Resumo:
[Excerpt] Under anaerobic conditions long chain fatty acids (LCFA) can be converted to methane by syntrophic bacteria and methanogenic archaea. LCFA degradation was also reported in the presence of alternative hydrogenotrophic partners, such as sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB), which generally show higher affinity for H2 than methanogens and are more resistant to LCFA [1,2,3]. Their presence in a microbial culture degrading LCFA can be advantageous to reduce LCFA toxicity towards methanogens, although high concentrations of external electron acceptor (EEA) can lead to outcompetition of methanogens and cease methane production. In this work, we tested the effect of adding sub-stoichiometric concentrations of sulfate and iron(III) to methanogenic communities degrading LCFA. (...)
Resumo:
Au cours des dernières décennies, l’intérêt pour la gazéification de biomasses a considérablement augmenté, notamment en raison de la grande efficacité de recouvrement énergétique de ce procédé par rapport aux autres procédés de génération de bioénergies. Les composants majoritaires du gaz de synthèse, le monoxyde de carbone (CO) et l’hydrogène (H2) peuvent entre autres servir de substrats à divers microorganismes qui peuvent produire une variété de molécules chimiques d’intérêts, ou encore produire des biocarburants, particulièrement le méthane. Il est donc important d'étudier les consortiums méthanogènes naturels qui, en syntrophie, serait en mesure de convertir le gaz de synthèse en carburants utiles. Cette étude évalue principalement le potentiel de méthanisation du CO par un consortium microbien issu d’un réacteur de type UASB, ainsi que les voies métaboliques impliquées dans cette conversion en conditions mésophiles. Des tests d’activité ont donc été réalisés avec la boue anaérobie du réacteur sous différentes pressions partielles de CO variant de 0.1 à 1,65 atm (0.09 à 1.31 mmol CO/L), en présence ou absence de certains inhibiteurs métaboliques spécifiques. Dès le départ, la boue non acclimatée au CO présente une activité carboxidotrophique relativement intéressante et permet une croissance sur le CO. Les tests effectués avec de l’acide 2- bromoethanesulfonique (BES) ou avec de la vancomycine démontrent que le CO est majoritairement consommé par les bactéries acétogènes avant d’être converti en méthane par les méthanogènes acétotrophes. De plus, un plus grand potentiel de méthanisation a pu être atteint sous une atmosphère constituée uniquement de CO en acclimatant auparavant la boue. Cette adaptation est caractérisée par un changement dans la population microbienne désormais dominée par les méthanogènes hydrogénotrophes. Ceci suggère un potentiel de production à large échelle de biométhane à partir du gaz de synthèse avec l’aide de biofilms anaérobies.
Resumo:
Little is known about the bacterial ecology of evaporative salt-mining sites (salterns) of which Teguidda-n-Tessoumt at the fringe of the West-African Saharan desert in Niger is a spectacular example with its many-centuries-old and very colorful evaporation ponds. During the different enrichment steps of the salt produced as a widely traded feed supplement for cattle, animal manure is added to the crude brine, which is then desiccated and repeatedly crystallized. This study describes the dominant Bacteria and Archaea communites in the brine from the evaporation ponds and the soil from the mine, which were determined by PCR-DGGE of 16S rDNA. Correspondence analysis of the DGGE-community fingerprints revealed a change in community structure of the brine samples during the sequential evaporation steps which was, however, unaffected by the brine's pH and electric conductivity (EC). The Archaea community was dominated by a phylogenetically diverse group of methanogens, while the Bacteria community was dominated by gamma proteobacteria. Microorganisms contained in the purified salt product have the potential to be broadly disseminated and are fed to livestock across the region. In this manner, the salt mines represent an intriguing example of long-term human activity that has contributed to the continual selection, cultivation, and dissemination of cosmopolitan microorganisms.
Resumo:
Na presente revisão, buscou-se apresentar os principais impactos ambientais causados pela pecuária, sobretudo, em relação às emissões de gases efeito estufa (GEE). Além disso, buscou-se apresentar possíveis formas de mitigar essas externalidades. A criação de bovinos, no Brasil, acontece de forma extensiva, muitas vezes em áreas com pastagem degradada e, portanto, de baixa produtividade. Isso possibilita à atividade uma oportunidade de redução do impacto causado ao meio ambiente, uma vez que ações tomadas, no sentido de melhorar o rendimento animal, devem resultar em um menor consumo de recursos naturais (terra e água) e maior eficiência do sistema digestivo animal. Os principais problemas apontados pelos pesquisadores, no que tange à pecuária extensiva, são o metano emitido pela fermentação entérica dos ruminantes, o óxido nitroso emitido pelos dejetos dos animais em pastejo e o dióxido de carbono trocado pelo solo e vegetação. Muitos fatores influenciam a produção de CH4 entérico dos ruminantes, inclusive o tipo de carboidrato fermentado, o sistema digestivo do animal, a quantidade e o tipo de alimentos consumidos. Diante do exposto, pesquisadores têm desenvolvido tecnologias para reduzir a emissão de metano, através da melhoria das práticas de manejo alimentar, manipulação ruminal, por meio de suplementação com monensina, lipídios, ácidos orgânicos e compostos de plantas. Outras estratégias de redução de metano que foram investigadas são: defaunação e vacinas, que buscam inibir micro-organismos metanogênicos e a metanogênese. Assim, a busca por sistemas de produção eficientes tem sido uma das perspectivas da pecuária mundial para reduzir a emissão de poluentes e intensificar a produção animal.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ruminal methanogens reduce carbon dioxide to methane (CH 4 ), thereby preventing hydrogen use by bacteria for VFA synthesis resulting in a 2 to 12% loss in feed gross energy. Methane is a greenhouse gas that contributes to global warming. The objectives of this work were to determine: (1) the extent to which ruminal cultures acquire resistance to a nitrofuranyl derivative of para-aminobenzoate (NFP) and an extract from the plant Yucca shidigera (Yucca); (2) the effect of distillers dried grains plus solubles (DDGS) on ruminal CH4 production; (3) the effect of brome hay-based diets, corn-based diets, and in vivo 2-bromoethansulfonate treatment on ruminal methane (CH4 ) production; and (4) the effect of the above treatments on the methanogen population. Ruminal cultures treated with NFP for 90 d maintained a diminished capacity to generate CH4 , but cultures became resistant to the inhibitory effects of Yucca treatment within 10 d. Both treatments decreased (P < 0.01) the relative abundance of total Archaea and the order Methanomicrobiales, but Yucca treatment increased (P < 0.01) the relative abundance of the order Methanobacteriales. The replacement of brome hay and corn with DDGS in lamb diets decreased (P < 0.01) and increased (P < 0.05), respectively, the amount of CH4 produced per unit of digested DM. The substitution of DDGS for brome hay increased (P < 0.01) the relative abundance of the order Methanomicrobiales. The replacement of brome hay with corn decreased (P < 0.05) the amount of CH4 produced per unit of digested DM, and also decreased (P < 0.05) the relative abundance of both Archaea and the order Methanomicrobiales. However, the abundance of the order Methanobacteriales increased (P < 0.05) as corn replaced brome hay. Intraruminal administration of 2-bromoethansulfonate decreased (P < 0.05) CH4 emissions, and decreased (P < 0.05) the relative abundance of Archaea and Methanobacteriales. In conclusion, NFP may be efficacious for chronically inhibiting ruminal methanogenesis, and the replacement of dietary forage with DDGS attenuates CH4 emissions from ruminant animals. Changes in domain- and order-specific ribosomal DNA indicators of methanogens are not consistently correlated with changes in CH4 production.
Resumo:
Little is known about the ability of methanogens to grow and produce methane in estuarine environments. In this study, traditional methods for cultivating strictly anaerobic microorganisms were combined with Fluorescence in situ hybridization (FISH) technique to enrich and identify methanogenic Archaea cultures occurring in highly polluted sediments of tropical Santos-So Vicente Estuary (So Paulo, Brazil). Sediment samples were enriched at 30A degrees C under strict anaerobic and halophilic conditions, using a basal medium containing 2% of sodium chloride and amended with glucose, methanol, and sodium salts of acetate, formate and lactate. High methanogenic activity was detected, as evidenced by the biogas containing 11.5 mmol of methane at 20 days of incubation time and methane yield of 0.138-mmol CH(4)/g organic matter/g volatile suspense solids. Cells of methanogenic Archaea were selected by serial dilution in medium amended separately with sodium acetate, sodium formate, or methanol. FISH analysis revealed the presence of Methanobacteriaceae and Methanosarcina sp. cells.