999 resultados para Meteorology and Climatology
Resumo:
The El Niño/ Southern Oscillation (ENSO) phenomenon is the strongest known natural interannual climate fluctuation. The most recent two extreme ENSO events of 1982/83 and 1997/98 severley hit the socio-economy of main parts of Indonesia. As the climate variability is not homogeneous over the whole Archipelago of Indonesia, ENSO events cause negative precipitation anomalies of diverse magnitude and uration in different regions. Understanding the hydrology of humid tropical catchments is an essential prerequisite to investigate the impact of climate variability on the catchment hydrology. Together with the quantitative assessment of future water resource changes they are essential tools to develop mitigation strategies on a catchment scale. These results can be integrated into long term Integrated Water Resource Management (IWRM) strategies. The general objective of this study is to investigate and quantify the impact of ENSO caused climate variability on the water balance and the implications for water resources of a mesoscale tropical catchment.
Resumo:
This article offers a review of research and policy on climate change in Portugal and is organized into three main themes: scientific knowledge and assessment of climate change; policy analysis and evaluation; and public engagement. Modern scientific research on meteorology and climatology started in Portugal in the 1950s and a strong community of researchers in climate science, vulnerabilities, impacts, and adaptation has since developed, particularly in the last decade. Nevertheless, there are still many gaps in research, especially regarding the economic costs of climate change in Portugal and costs and benefits of adaptation. Governmental policies with a strong emphasis on mitigation were introduced at the end of the 1990s. As greenhouse gas emissions continued to rise beyond its Kyoto target for 2012, the country had to resort to the Kyoto Flexibility Mechanisms in order to comply. Climate change adaptation policies were introduced in 2010 but are far from being fully implemented. Regarding public engagement with climate change, high levels of concern contrast with limited understanding and rather weak behavioral dispositions to address climate change. Citizens display a heavy reliance on the media as sources of information, which are dominated by a techno-managerial discourse mainly focused on the global level. The final part of the article identifies research gaps and outlines a research agenda. Connections between policy and research are also discussed
Resumo:
Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the "Brown and Francis" mass-size relationship is used. The comparisons spanned radar reflectivity values from -15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m(-3), and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration "intercept parameter" rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over Southern England. It is found that the model predicted mean I WC to within 10% of the observations at temperatures between -30 degrees and - 10 degrees C but tended to underestimate it by around a factor of 2 at colder temperatures.
Resumo:
The aim of this chapter is to give a general overview of the atmospheric circulation, highlighting the main concepts that are important for a basic understanding of meteorology and atmospheric dynamics relevant to atmospheric data assimilation.
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Resumo:
As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was ‘How do we predict weather and climate?’ Making use of the students’ familiarity with weather and climate, several concepts of relevance to secondary science were investigated. The open days also provided an opportunity for more than 30 research staff from the university to interact with the students. Feedback from students and teachers was extremely positive. This article shows how meteorological science can be used to illustrate elements of the secondary science and mathematics curricula.
Resumo:
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Resumo:
The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar to provide a seamless retrieval of ice water content, effective radius, and extinction coefficient from the thinnest cirrus (seen only by the lidar) to the thickest ice cloud (penetrated only by the radar). In this paper, several versions of the VarCloud retrieval are compared with the CloudSat standard ice-only retrieval of ice water content, two empirical formulas that derive ice water content from radar reflectivity and temperature, and retrievals of vertically integrated properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) radiometer. The retrieved variables typically agree to within a factor of 2, on average, and most of the differences can be explained by the different microphysical assumptions. For example, the ice water content comparison illustrates the sensitivity of the retrievals to assumed ice particle shape. If ice particles are modeled as oblate spheroids rather than spheres for radar scattering then the retrieved ice water content is reduced by on average 50% in clouds with a reflectivity factor larger than 0 dBZ. VarCloud retrieves optical depths that are on average a factor-of-2 lower than those from MODIS, which can be explained by the different assumptions on particle mass and area; if VarCloud mimics the MODIS assumptions then better agreement is found in effective radius and optical depth is overestimated. MODIS predicts the mean vertically integrated ice water content to be around a factor-of-3 lower than that from VarCloud for the same retrievals, however, because the MODIS algorithm assumes that its retrieved effective radius (which is mostly representative of cloud top) is constant throughout the depth of the cloud. These comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms and also for future studies to compare not only the mean values but also the full probability density function.
Resumo:
This study focuses on the occurrence and type of clouds observed in West Africa, a subject which has neither been much documented nor quantified. It takes advantage of data collected above Niamey in 2006 with the ARM mobile facility. A survey of cloud characteristics inferred from ground measurements is presented with a focus on their seasonal evolution and diurnal cycle. Four types of clouds are distinguished: high-level clouds, deep convective clouds, shallow convective clouds and mid-level clouds. A frequent occurrence of the latter clouds located at the top of the Saharan Air Layer is highlighted. High-level clouds are ubiquitous throughout the period whereas shallow convective clouds are mainly noticeable during the core of the monsoon. The diurnal cycle of each cloud category and its seasonal evolution is investigated. CloudSat and CALIPSO data are used in order to demonstrate that these four cloud types (in addition to stratocumulus clouds over the ocean) are not a particularity of the Niamey region and that mid-level clouds are present over the Sahara during most of the Monsoon season. Moreover, using complementary data sets, the radiative impact of each type of clouds at the surface level has been quantified in the shortwave and longwave domain. Mid-level clouds and anvil clouds have the largest impact respectively in longwave (about 15 W m−2) and the shortwave (about 150 W m−2). Furthermore, mid-level clouds exert a strong radiative forcing in Spring at a time when the other cloud types are less numerous.
Resumo:
Northern Hemisphere cyclone activity is assessed by applying an algorithm for the detection and tracking of synoptic scale cyclones to mean sea level pressure data. The method, originally developed for the Southern Hemisphere, is adapted for application in the Northern Hemisphere winter season. NCEP-Reanalysis data from 1958/59 to 1997/98 are used as input. The sensitivities of the results to particular parameters of the algorithm are discussed for both case studies and from a climatological point of view. Results show that the choice of settings is of major relevance especially for the tracking of smaller scale and fast moving systems. With an appropriate setting the algorithm is capable of automatically tracking different types of cyclones at the same time: Both fast moving and developing systems over the large ocean basins and smaller scale cyclones over the Mediterranean basin can be assessed. The climatology of cyclone variables, e.g., cyclone track density, cyclone counts, intensification rates, propagation speeds and areas of cyclogenesis and -lysis gives detailed information on typical cyclone life cycles for different regions. The lowering of the spatial and temporal resolution of the input data from full resolution T62/06h to T42/12h decreases the cyclone track density and cyclone counts. Reducing the temporal resolution alone contributes to a decline in the number of fast moving systems, which is relevant for the cyclone track density. Lowering spatial resolution alone mainly reduces the number of weak cyclones.