7 resultados para Metasurfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The volume size of a converging wave, which plays a relevant role in image resolution, is governed by the wavelength of the radiation and the numerical aperture (NA) of the wavefront. We designed an ultrathin (λ/8 width) curved metasurface that is able to transform a focused field into a high-NA optical architecture, thus boosting the transverse and (mainly) on-axis resolution. The elements of the metasurface are metal-insulator subwavelength gratings exhibiting extreme anisotropy with ultrahigh index of refraction for TM polarization. Our results can be applied to nanolithography and optical microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As future technologies are going to be autonomous under the umbrella of the Internet of things (IoT) we can expect WPT to be the solution for intelligent devices. WPT has many industrial and medical applications both in the near-field and far-field domains. Considering the impact of WPT, this thesis is an attempt to design and realize both near-field and far-field WPT solutions for different application scenarios. A 27 MHz high frequency inductive wireless power link has been designed together with the Class-E switching inverter to compensate for the efficiency loss because of the varying weak coupling between transmitter and receiver because of their mutual misalignment. Then a system of three coils was introduced for SWIPT. The outer coil for WPT and the inner two coils were designed to fulfil the purpose of communication and testing, operating at frequencies different from the WPT coil. In addition to that, a trapping filter technique has also been adopted to ensure the EM isolation of the coils. Moreover, a split ring resonator-based dual polarization converter has been designed with good efficiency over a wide frequency range. The gap or cuts have been introduced in the adjacent sides of the square ring to make it a dual-polarization converter. The converter is also stable over a wide range of incident angles. Furthermore, a meta-element based intelligent surface has been designed to work in the reflection mode at 5 GHz. In this research activity, interdigital capacitors (IDCs) instead of ICs are introduced and a thin layer of the HfZrO between substrate and meta elements is placed whose response can be tuned and controlled with the applied voltage to achieve IRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation aims at developing advanced analytical tools able to model surface waves propagating in elastic metasurfaces. In particular, four different objectives are defined and pursued throughout this work to enrich the description of the metasurface dynamics. First, a theoretical framework is developed to describe the dispersion properties of a seismic metasurface composed of discrete resonators placed on a porous medium considering part of it fully saturated. Such a model combines classical elasticity theory, Biot’s poroelasticity and an effective medium approach to describe the metasurface dynamics and its coupling with the poroelastic substrate. Second, an exact formulation based on the multiple scattering theory is developed to extend the two-dimensional classical Lamb’s problem to the case of an elastic half-space coupled to an arbitrary number of discrete surface resonators. To this purpose, the incident wavefield generated by a harmonic source and the scattered field generated by each resonator are calculated. The substrate wavefield is then obtained as solutions of the coupled problem due to the interference of the incident field and the multiple scattered fields of the oscillators. Third, the above discussed formulation is extended to three-dimensional contexts. The purpose here is to investigate the dynamic behavior and the topological properties of quasiperiodic elastic metasurfaces. Finally, the multiple scattering formulation is extended to model flexural metasurfaces, i.e., an array of thin plates. To this end, the resonant plates are modeled by means of their equivalent impedance, derived by exploiting the Kirchhoff plate theory. The proposed formulation permits the treatment of a general flexural metasurface, with no limitation on the number of plates and the configuration taken into account. Overall, the proposed analytical tools could pave the way for a better understanding of metasurface dynamics and their implementation in engineered devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the focus is on utilizing metasurfaces to improve radiation characteristics of planar structures. The study encompasses various aspects of metasurface applications, including enhancing antenna radiation characteristics and manipulating electromagnetic (EM) waves, such as polarization conversion and anomalous reflection. The thesis introduces the design of a single-port antenna with dual-mode operation, integrating metasurfaces. This antenna serves as the front-end for a next-generation tag, functioning as a position sensor with identification and energy harvesting capabilities. It operates in the lower European Ultra-Wideband (UWB) frequency range for communication/localization and the UHF band for wireless energy reception. The design aims for a low-profile stack-up that remains unaffected by background materials. Researchers worldwide are drawn to metasurfaces due to their EM wave manipulation capabilities. The thesis also demonstrates how a High-Impedance Surface (HIS) can enhance the antenna's versatility through metasurface application, including conformal design using 3D-printing technology, ensuring adaptability for various deformation and tracking/powering scenarios. Additionally, the thesis explores two distinct metasurface applications. One involves designing an angularly stable super-wideband Circular Polarization Converter (CPC) operating from 11 to 35GHz with an impressive relative impedance bandwidth of 104.3%. The CPC shows a stable response even at oblique incidences up to 40 degrees, with a Peak Cross-Polarization Ratio (PCR) exceeding 62% across the entire band. The second application focuses on an Intelligent Reflective Surface (IRS) capable of redirecting incoming waves in unconventional directions. Tunability is achieved through an artificially developed ferroelectric material (HfZrO) and distributed capacitive elements (IDC) to fine-tune impedance and phase responses at the meta-atom level. The IRS demonstrates anomalous reflection for normal incident waves. These innovative applications of metasurfaces offer promising advancements in antenna design, EM wave manipulation, and versatile wireless communication systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An emerging technology, that Smart Radio Environments rely on to improve wireless link quality, are Reconfigurable Intelligent Surfaces (RISs). A RIS, in general, can be understood as a thin layer of EM composite material, typically mounted on the walls or ceilings of buildings, which can be reconfigured even after its deployment in the network. RISs made by composing artificial materials in an engineered way, in order to obtain unconventional characteristics, are called metasurfaces. Through the programming of the RIS, it is possible to control and/or modify the radio waves that affect it, thus shaping the radio environment. To overcome the limitations of RISs, the metaprism represents an alternative: it is a passive and non-reconfigurable frequency-selective metasurface that acts as a metamirror to improve the efficiency of the wireless link. In particular, using an OFDM (Orthogonal Frequency-Division Multiplexing) signaling it is possible to control the reflection of the signal, suitably selecting the sub-carrier assigned to each user, without having to interact with the metaprism or having to estimate the CSI. This thesis investigates how OFDM signaling and metaprism can be used for localization purposes, especially to extend the coverage area at low cost, in a scenario where the user is in NLoS (Non-line-of-sight) conditions with respect to the base station, both single antenna. In particular, the paper concerns the design of the analytical model and the corresponding Matlab implementation of a Maximum Likelihood (ML) estimator able to estimate the unknown position, behind an obstacle, from which a generic user transmits to a base station, exploiting the metaprism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical techniques such as the Boundary Element Method, Finite Element Method and Finite Difference Time Domain have been used widely to investigate plane and curved wave-front scattering by rough surfaces. For certain shapes of roughness elements (cylinders, semi-cylinders and ellipsoids) there are semi-analytical alternatives. Here, we present a theory for multiple scattering by cylinders on a hard surface to investigate effects due to different roughness shape, the effects of vacancies and variation of roughness element size on the excess attenuation due to a periodically rough surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since their emergence, locally resonant metamaterials have found several applications for the control of surface waves, from micrometer-sized electronic devices to meter-sized seismic barriers. The interaction between Rayleigh-type surface waves and resonant metamaterials has been investigated through the realization of locally resonant metasurfaces, thin elastic interfaces constituted by a cluster of resonant inclusions or oscillators embedded near the surface of an elastic waveguide. When such resonant metasurfaces are embedded in an elastic homogeneous half-space, they can filter out the propagation of Rayleigh waves, creating low-frequency bandgaps at selected frequencies. In the civil engineering context, heavy resonating masses are needed to extend the bandgap frequency width of locally resonant devices, a requirement that limits their practical implementations. In this dissertation, the wave attenuation capabilities of locally resonant metasurfaces have been enriched by proposing (i) tunable metasurfaces to open large frequency bandgaps with small effective inertia, and by developing (ii) an analytical framework aimed at studying the propagation of Rayleigh waves propagation in deep resonant waveguides. In more detail, inertial amplified resonators are exploited to design advanced metasurfaces with a prescribed static and a tunable dynamic response. The modular design of the tunable metasurfaces allows to shift and enlarge low-frequency spectral bandgaps without modifying the total inertia of the metasurface. Besides, an original dispersion law is derived to study the dispersive properties of Rayleigh waves propagating in thick resonant layers made of sub-wavelength resonators. Accordingly, a deep resonant wave barrier of mechanical resonators embedded inside the soil is designed to impede the propagation of seismic surface waves. Numerical models are developed to confirm the analytical dispersion predictions of the tunable metasurface and resonant layer. Finally, a medium-size scale resonant wave barrier is designed according to the soil stratigraphy of a real geophysical scenario to attenuate ground-borne vibration.