4 resultados para Metallochaperone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper plays a fundamental role in the biochemistry of all aerobic organisms. The delivery of this metal to specific intracellular targets is mediated by metallochaperones. To elucidate the role of the metallochaperone Atox1, we analyzed mice with a disruption of the Atox1 locus. Atox1−/− mice failed to thrive immediately after birth, with 45% of pups dying before weaning. Surviving animals exhibited growth failure, skin laxity, hypopigmentation, and seizures because of perinatal copper deficiency. Maternal Atox1 deficiency markedly increased the severity of Atox1−/− phenotype, resulting in increased perinatal mortality as well as severe growth retardation and congenital malformations among surviving Atox1−/− progeny. Furthermore, Atox1-deficient cells accumulated high levels of intracellular copper, and metabolic studies indicated that this defect was because of impaired cellular copper efflux. Taken together, these data reveal a direct role for Atox1 in trafficking of intracellular copper to the secretory pathway of mammalian cells and demonstrate that this metallochaperone plays a critical role in perinatal copper homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutaredoxin1 (GRX1) is a glutathione (GSH)-dependent thiol oxidoreductase. The GRX1/GSH system is important for the protection of proteins from oxidative damage and in the regulation of protein function. Previously we demonstrated that GRX1/GSH regulates the activity of the essential copper-transporting P1B-Type ATPases (ATP7A, ATP7B) in a copper-responsive manner. It has also been established that GRX1 binds copper with high affinity and regulates the redox chemistry of the metallochaperone ATOX1, which delivers copper to the copper-ATPases. In this study, to further define the role of GRX1 in copper homeostasis, we examined the effects of manipulating GRX1 expression on copper homeostasis and cell survival in mouse embryonic fibroblasts and in human neuroblastoma cells (SH-SY5Y). GRX1 knockout led to cellular copper retention (especially when cultured with elevated copper) and reduced copper tolerance, while in GRX1-overexpressing cells challenged with elevated copper, there was a reduction in both intracellular copper levels and copper-induced reactive oxygen species, coupled with enhanced cell proliferation. These effects are consistent with a role for GRX1 in regulating ATP7A-mediated copper export, and further support a new function for GRX1 in neuronal copper homeostasis and in protection from copper-mediated oxidative injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved. To investigate copper binding to a family of structurally related copper-binding proteins, we have characterised the second Menkes N-terminal domain (MNKr2). The structure, determined using H-1 and N-15 heteronuclear NMR, of the reduced form of MNKr2 has revealed two alpha-helices lying over a single beta-sheet and shows that the binding site, a Cys(X)(2)Cys pair, is located on an exposed loop. H-1-N-15 HSQC experiments demonstrate that binding of Cu(I) causes changes that are localised to conserved residues adjacent to the metal binding site. Residues in this area are important to the delivery of copper by the structurally related Cu(I) chaperones. Complementary site-directed mutagenesis of the adjacent residues has been used to probe the structural roles of conserved residues. (C) 2003 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic is a ubiquitous environmental toxic substance. As a consequence of continual exposure to arsenic, nearly every organism, from Escherichia coli to humans have evolved arsenic detoxification pathways. One of the pathways is extrusion of arsenic from inside the cells, thereby conferring resistance. The R773 arsRDABC operon in E. coli encodes an ArsAB efflux pump that confers resistance to arsenite. ArsA is the catalytic subunit of the pump, while ArsB forms the oxyanion conducting pathway. ArsD is an arsenite metallochaperone that binds arsenite and transfers it to ArsA. The interaction of ArsA and ArsD allows for resistance to As(III) at environmental concentrations. The interaction between ArsA ATPase and ArsD metallochaperone was examined. A quadruple mutant in the arsD gene encoding a K2A/K37A/K62A/K104A ArsD is unable to interact with ArsA. An error-prone mutagenesis approach was used to generate random mutations in the arsA gene that restored interaction with the quadruple arsD mutant in yeast two-hybrid assays. Three such mutants encoding Q56R, F120I and D137V ArsA were able to restore interaction with the quadruple ArsD mutant. Structural models generated by in silico docking suggest that an electrostatic interface favors reversible interaction between ArsA and ArsD. Mutations in ArsA that propagate changes in hydrogen bonding and salt bridges to the ArsA-ArsD interface also affect their interactions. The second objective was to examine the mechanism of arsenite resistance through methylation and subsequent volatilization. Microbial ArsM (As(III) S-adenosylmethyltransferase) catalyzes the formation of trimethylarsine as the volatile end product. The net result is loss of arsenic from cells. The gene for CrArsM from the eukaryotic green alga Chlamydomonas reinhardtii was chemically synthesized and expressed in E. coli. The purified protein catalyzed the methylation of arsenite into methyl-, dimethyl- and trimethyl products. Synthetic purified CrArsM was crystallized in an unliganded form. Biochemical and biophysical studies conducted on CrArsM sheds new light on the pathways of biomethylation. While in microbes ArsM detoxifies arsenic, the human homolog, hAS3MT, converts inorganic arsenic into more toxic and carcinogenic forms. An understanding of the enzymatic mechanism of ArsM will be critical in deciphering its parallel roles in arsenic detoxification and carcinogenesis.