925 resultados para Metallic substrate
Resumo:
fac-[MBr(CO)(3)(pypzH)] (M = Mn, Re; pypzH = (3-(2-pyridyl) pyrazole) complexes are prepared from fac[ MBr(CO)(3)(NCMe)(2)] and pypzH. The result of their deprotonation depends on the metallic substrate: the rhenium complex affords cleanly the bimetallic compound [fac-{Re(CO)(3)(mu(2)-pypz)}] 2 (mu(2)-pypz = mu(2)-3-(2pyridyl-. 1N) pyrazolate-2. 1N), which was crystallographically characterized, whereas a similar manganese complex was not detected. When two equivalents of pyridylpyrazolate are used, polymetallic species [fac-M(CO) 3(mu(2)-pypz)(mu(3)-pypz) M'] (mu(3)-pypz = mu(3)-3-(2-pyridyl-kappa N-1) pyrazolate-1 kappa 2N, N: 2. 1N:; M = Mn, M' = Li, Na, K; M = Re, M' = Na) are obtained. The crystal structures of the manganese carbonylate complexes were determined. The lithium complex is a monomer containing one manganese and one lithium atom, whereas the sodium and potassium complexes are dimers and reveal an unprecedented coordination mode for the bridging 3-(2-pyridyl) pyrazolate ligand, where the nitrogen of the pyridyl fragment and the nitrogen-1 of pyrazolate are chelated to manganese atoms, and each nitrogen-2 of pyrazolate is coordinated to two alkaline atoms. The polymetallic carbonylate complexes are unstable in solution and evolve spontaneously to [fac-{Re(CO) 3(mu(2)-pypz)}](2) or to the trimetallic paramagnetic species [MnII(mu(2)-pypz) 2{fac-{MnI(CO) 3(mu(2)-pypz)}(2)}]. The related complex cis-[MnCl2(pypzH)(2)] was also synthesized and structurally characterized. The electrochemical behavior of the new homo-and heteropolymetallic 3-(2-pyridyl) pyrazolate complexes has been studied and details of their redox properties are reported.
Organic-inorganic hybrid sol-gelcoatings for metal corrosion protection: a review of recent progress
Resumo:
This paper is a review of the most recent and relevant achievements (from 2001 to 2013) on the development of organic–inorganic hybrid (OIH) coatings produced by sol–gel-derivedmethods to improve resistance to oxidation/corrosion of different metallic substrates and their alloys. This review is focused on the research of OIH coatings based on siloxanes using the sol–gel process conducted at an academic level and aims to summarize the materials developed and identify perspectives for further research. The fundamentals of sol–gel are described, including OIH classification, the interaction with the substrate, their advantages, and limitations. The main precursors used in the synthesis ofOIHsol–gel coatings for corrosion protection are also discussed, according to the metallic substrate used. Finally, a multilayer system to improve the resistance to corrosion is proposed, based on OIH coatings produced by the sol–gel process, and the future research challenges are debated.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.
Resumo:
The partial fixed prosthodontics restoration is used to rehabilitate form and function of partial or total compromised teeth, having to remain permanently joined to remainder tooth. The most useful material on prosthodontics is the feldspar porcelain, commercialized as aluminosilicate powders. Dental porcelains are presented with limited mechanical properties to rehabilitate extensive spaces. The association with Ni-Cr metallic systems (metal-ceramic system) allows that the metallic substructure compensates the fragile porcelain nature, preserving the thermal insulation and aesthetics desirable, as well as reducing the possibility of cracking during matication efforts. Cohesive flaws by low mechanical strength connect the metallic substructure to the oral environment, characterized by a electrolytic solution (saliva), by aggressive temperature, pH cyclic changes and mechanical requests. This process results on ionic liberation that could promote allergic or inflammatory responses, and/or clinical degradation of ceramometal system. The aim of this study was to evaluate the presence of an intermediate titanium layer on the microscopic fracture behavior of porcelains on ceramometal systems. Plasma deposition of titanium films result in regular passivating oxide layers which act as barriers to protect the metallic substrate against the hazardous effects of corrosive saliva. Tribocorrosion tests were performed to simulate the oral environment and mechanical stress, making it possible the early detection of crack formation and growth on metal-ceramic systems, which estimate the adherence between the compounds of this system. Plain samples consisting of dental feldspar porcelain deposited either onto metallic substrates or titanium films were fired and characterized by scanning electron microscopy. The result showed that the titanium film improved the adherence of the system compared to conventional metal-ceramic interfaces, thus holding crack propagation
Resumo:
Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O crescimento da hidroxiapatita - HA, tanto no meio biológico quanto em soluções aquosas como a Synthetic Body Fluid - SBF, ocorre em meio contendo, além dos elementos Ca e P, elementos-traços essenciais tais como: Mg2+, HCO3-, K+ e Na+. Alguns destes elementos são conhecidos como inibidores do crescimento da HA, como Mg2+ e HCO3-. Neste trabalho, estudou-se a influência dos íons K+ e Mg2+ na formação de apatitas sobre substratos metálicos de Ti c.p. previamente tratados com NaOH 5M. Os efeitos destes íons no recobrimento obtidos, antes e após o tratamento térmico a 800ºC, foram analisados por microscopia eletrônica de varredura - MEV, espectroscopia de energia dispersiva de raios-X - EDX, difratometria de raios-X - DRX e espectroscopia no infravermelho - IV e mostraram que o efeito inibitório do Mg2+ na formação da HA se manifesta após o tratamento térmico. Diferentemente, o crescimento cristalino da HA não foi afetado pela presença do íon K+. Além disso, a formação de apatita carbonatada se deu também em soluções que não continham o íon CO3(2-) em sua composição.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)