1000 resultados para Metal Targets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimised ultrafast laser ablation can result in almost complete ionisation of the target material and the formation of a high velocity plasma jet. Collisions with the ambient gas behind the shock front cools the material resulting in the formation of mainly spherical, single crystal nanoscale particles in the condensate. This work characterises the nanoscale structures produced by the ultrafast laser interactions in He atmospheres at STP with Ni and Al. High resolution transmission electron microscopy was employed to study the microstructure of the condensates and to classify the production of particles forms as a function of the illumination conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photocopy. [Oak Ridge, Tenn. : U.S. Dept. of Energy, Technical Information Center, 1979]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Laser induced plasma (LIP) emissions from some metal oxide targets were studied with corresponding metal targets of pure quality as a reference. Atomic emissions in the visible region were used in the spectroscopic procedures of LIP characterization. The studies were meant to throw light into LIP dynamics and they provided many experimental results which improved the general awareness of plasma state.When target materials were photo-ablated with an energetically suitable laser pulse, they developed electric charges in them.An electrical signal which was delivered from the target served as an alternative probe signal for the diagnostics of LIP and to track different charged states in the plasma. The signal showed a double peak distribution with positive polarity and a modified time of flight with various voltage levels of a given polarity.The expansion dynamics of LIP in magnetic field were also investigated by monitoring the voltage transients generated at the target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Das Element Arsen besitzt eine Reihe von Isotopen, die in nahezu trägerfreier Form (nca) produziert werden können und deshalb in der Radiopharmazie für die Diagnose oder Endoradiotherapie Verwendung finden können. Bei der Positronenemissionstomographie (PET) gibt es eine gewisse Lücke bei der Versorgung mit langlebigen Positronenemittern, die zur Untersuchung von langsamen physiologischen Prozessen wie z.B. der Biodistribution und Anreicherung von Antikörpern in Tumorgewebe eingesetzt werden können. Die beiden Arsenisotope 72As (T1/2 = 26 h, 88 % beta+) und 74As (T1/2 = 17,8 d, 29 % beta+) vereinen eine lange physikalische Halbwertszeit mit einer hohen Positronenemissionsrate und sind daher geeignete Kandidaten. Da das Verhalten von radioaktivem Arsen und seine Verwendung in der molekularen Bildgebung international relativ wenig bearbeitet sind, wurde die Radiochemie des Arsens von der Isotopenproduktion an Kernreaktor und Zyklotron, über die Entwicklung von Abtrennungsmethoden für Germanium und Arsen, bis hin zur Entwicklung einer soliden Markierungschemie für Antikörper weiterentwickelt. Die in dieser Arbeit bearbeiteten Felder sind: 1. Die Isotopenproduktion der relevanten Arsenisotope (72/74/77As) wurde an Kernreaktor und Zyklotron durch Bestrahlung von GeO2- und Germaniummetalltargets durchgeführt. Pro 6 h Bestrahlung von 100 mg Germanium konnten ca. 2 MBq 77As am TRIGA Reaktor in Mainz hergestellt werden. Am Zyklotron des DKFZ in Heidelberg konnten unter optimierten Bedingungen bei der Bestrahlung von Germaniummetall (EP = 15 Mev, 20 µA, 200 µAh) ca. 4 GBq 72As und ca. 400 MBq 74As produziert werden. 2. Die Entwicklung neuer Abtrennungsmethoden für nca 72/74/77As von makroskopischen Mengen Germanium wurde vorangetrieben. Für die Aufarbeitung von GeO2- und Germaniummetalltargets kamen insgesamt 8 verschiedene Methoden wie Festphasenextraktion, Flüssig-Flüssig-Extraktion, Destillation, Anionenaustauschchromatographie zum Einsatz. Die erzielten Ausbeuten lagen dabei zwischen 31 und 56 %. Es wurden Abtrennungsfaktoren des Germaniums zwischen 1000 und 1•10E6 erreicht. Alle erfolgreichen Abtrennungsmethoden lieferten *As(III) in 500 µl PBS-Puffer bei pH 7. Diese Form des Radioarsens ist für die Markierung von SH-modifizierten Molekülen, wie z.B. Antikörpern geeignet. 3. Die Entwicklung von Methoden zur Bestimmung des Oxidationszustandes von nca *As in organischem, neutralem wässrigen, oder stark sauren Medium mittels Radio-DC und Anionenaustauschchromatographie wurde durchgeführt und führte zu einem besseren Verständnis der Redoxchemie des nca *As. 4. SH-modifizierte Antikörper wurden mit 72/74/77As(III) markiert. Dabei wurden zwei Methoden (Modifizierung mit SATA und TCEP) miteinander verglichen. Während das *As(III) bei Verwendung von TCEP in Ausbeuten > 90 % mit dem Antikörper reagierte, wurde für SATA-modifizierte Antikörper in Abhängigkeit von der verwendeten Abtrennungsmethode eine breite Spanne von 0 % bis > 90 % beobachtet. 5. Es wurden Phantommessungen mit 18F, 72As und 74As am µ-PET-Scanner durchgeführt, um erste Aussagen über die zu erwartende Auflösung der Arsenisotope zu erhalten. Die Auflösung von 74As ist mit 18F vergleichbar, während die von 72As erkennbar schlechter ist.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy spectra of 235U atoms sputtered from a 93% enriched 235U metal foil and a hot pressed 235U02 pellet by an 80 keV 40Ar+ beam have been measured in the range 1 eV to 1 keV. The measurements were made using a mechanical time-of-flight spectrometer in conjunction with the fission track technique for detecting 235U. The design and construction of this spectrometer are discussed in detail, and its operation is mathematically analyzed.

The results of the experiment are discussed in the context of the random collision cascade model of sputtering. The spectrum obtained by the sputtering of the 235U metal target was found to be well described by the functional form E(E+Eb)-2.77, where Eb = 5.4 eV. The 235U02 target produced a spectrum that peaked at a lower energy (~ 2 eV) and decreased somewhat more rapidly for E ≳ 100 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop on Trace Metal Sensors for Coastal Monitoring was convened April 11-13, 2005 at the Embassy Suites in Seaside, California with partnership from Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). Trace metals play many important roles in marine ecosystems. Due to their extreme toxicity, the effects of copper, cadmium and certain organo-metallinc compounds (such as tributyltin and methylmercury) have received much attention. Lately, the sublethal effects of metals on phytoplankton biochemistry, and in some cases the expression of neurotoxins (Domoic acid), have been shown to be important environmental forcing functions determining the composition and gene expression in some groups. More recently the role of iron in controlling phytoplankton growth has led to an understanding of trace metal limitation in coastal systems. Although metals play an important role at many different levels, few technologies exist to provide rapid assessment of metal concentrations or metal speciation in the coastal zone where metal-induced toxicity or potential stimulation of harmful algal blooms, can have major economic impacts. This workshop focused on the state of on-site and in situ trace element detection technologies, in terms of what is currently working well and what is needed to effectively inform coastal zone managers, as well as guide adaptive scientific sampling of the coastal zone. Specifically the goals of this workshop were to: 1) summarize current regional requirements and future targets for metal monitoring in freshwater, estuarine and coastal environments; 2) evaluate the current status of metal sensors and possibilities for leveraging emerging technologies for expanding detection limits and target elements; and 3) help identify critical steps needed for and limits to operational deployment of metal sensors as part of routine water quality monitoring efforts. Following a series of breakout group discussions and overview talks on metal monitoring regulatory issues, analytical techniques and market requirements, workshop participants made several recommendations for steps needed to foster development of in situ metal monitoring capacities: 1. Increase scientific and public awareness of metals of environmental and biological concern and their impacts in aquatic environments. Inform scientific and public communities regarding actual levels of trace metals in natural and perturbed systems. 2. Identify multiple use applications (e.g., industrial waste steam and drinking water quality monitoring) to support investments in metal sensor development. (pdf contains 27 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the use of fluorescent probes to evaluate the responses of the green alga Pseudokirchneriella subcapitata to the action of three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II) for a short time (6 h). The toxic effect of the metals on algal cells was monitored using the fluorochromes SYTOX Green (SG, membrane integrity), fluorescein diacetate (FDA, esterase activity) and rhodamine 123 (Rh123, mitochondrial membrane potential). The impact of metals on chlorophyll a (Chl a) autofluorescence was also evaluated. Esterase activity was the most sensitive parameter. At the concentrations studied, all metals induced the loss of esterase activity. SG could be used to effectively detect the loss of membrane integrity in algal cells exposed to 0.32 or 1.3 μmol L−1 Cu(II). Rh123 revealed a decrease in the mitochondrial membrane potential of algal cells exposed to 0.32 and 1.3 μmol L−1 Cu(II), indicating that mitochondrial activity was compromised. Chl a autofluorescence was also affected by the presence of Cr(VI) and Cu(II), suggesting perturbation of photosynthesis. In conclusion, the fluorescence-based approach was useful for detecting the disturbance of specific cellular characteristics. Fluorescent probes are a useful diagnostic tool for the assessment of the impact of toxicants on specific targets of P. subcapitata algal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Negative impacts from contaminants have occurred in Antarctic marine ecosystems resulting from human activities. To improve risk assessment procedures and develop site-specific environmental quality guidelines and remediation targets, this study successfully developed novel toxicity testing methods to determine the sensitivity of Antarctic marine invertebrate and microalgal species to metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase $\alpha$ are the molecular targets for two metal ions, Zn$\sp{2+}$ and Cd$\sp{2+},$ and an anticancer drug, F-ara-ATP.^ Human DNA ligases were purified to homogeneity and their AMP binding domains were mapped. Although their AMP-binding domains are similar, there could be difference between the two ligases in their DNA binding domains.^ The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP.^ A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex.^ F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3$\sp\prime$-terminus of DNA nick by DNA polymerase $\alpha.$^ All steps of the DNA ligation reaction were inhibited by Zn$\sp{2+}$ and Cd$\sp{2+}$ in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn$\sp{2+}$ and Cd$\sp{2+}$ showed their contradictory effects on the fidelity of the reaction by human DNA polymerase $\alpha.$ Zn$\sp{2+}$ decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd$\sp{2+}$ increased the frequencies of both misinsertion and mispair extension at very low concentration. Our data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported. ^