972 resultados para Metais - Tratamento termico


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a market environment increasingly competitive, the companies need to control of this process accurately, avoiding rework or rejection of materials during industrialization. This can be achieved by defining procedure that assure the maintenance of the materials characteristics, as specified initially in the projects. This graduation work has the objective of defining the best heat treatment parameter of normalizing for Heads, part of a pressure vessel, formed in P275NH material. The methodology applied is based on the execution of a sequence of Heat Treatments, using different parameters. The process variables were the cooling velocity, the hold time and the hold temperature variation. As a result of this study, it is noticed that the mechanical properties of the materials are strongly influenced by the hold temperature variation and by the cooling velocity, both determined for the heat treatment cycle

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a market environment increasingly competitive, the companies need to control of this process accurately, avoiding rework or rejection of materials during industrialization. This can be achieved by defining procedure that assure the maintenance of the materials characteristics, as specified initially in the projects. This graduation work has the objective of defining the best heat treatment parameter of normalizing for Heads, part of a pressure vessel, formed in P275NH material. The methodology applied is based on the execution of a sequence of Heat Treatments, using different parameters. The process variables were the cooling velocity, the hold time and the hold temperature variation. As a result of this study, it is noticed that the mechanical properties of the materials are strongly influenced by the hold temperature variation and by the cooling velocity, both determined for the heat treatment cycle

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nickel superalloys are known as being a material with poor machinability, they have some properties like high hardness, good resistance at high temperature, tendency to weld with the tool material at high temperature, etc. In the aerospace, biomedical and petrochemical industry, are increasing the need to use materials that resist to aggressive process and environment. In these uses, it has increased the use of nickel-based superalloys like Inconel 718 and consequently the need to research new techniques and tools to improve the machinability of this material. For the superalloys and resistant alloys at high temperatures is considered that the difficulty in the machining regards to the combination of the relatively high cutting forces and high temperatures that grow during the machine process, causing deformation or breakage of the cutting tool. This work purpose is to develop the study of the machining of external cylindrical turning of the nickel based alloy Inconel 718, using ceramic tools, seeking the optimization of machining this alloy, looking to provide real productive increases without the need of investments in new production means. The machining test were accomplished using commercials hard metal tools and the results were compared each other to find the best tool and the best parameter. The conclusion is that the tool TNMG160408-23 -class 1005- was the better one, when used with the parameter 60_15_08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As they have excellent mechanical properties, corrosion resistance and biocompatibility, much research has been conducted with respect to biomedical applications of titanium alloys. This work aims to study the experimental system binary alloy Ti-15Mo, in the raw state of fusion and heat treatment after homogenization, solubilization and calcination (simulating conditions employed for nanotube growth) targeting biomedical applications. Samples were obtained by casting the components in an electric arc furnace with inert atmosphere of argon. After obtaining the alloy, it was heat treated at three different heat treatments, namely homogenizing, calcining and simulation solubilization. The phases present were analyzed by X-ray diffraction, optical microscopy and microhardness testing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressure vessels are equipments that require a great care because of their high cost and human life risk in case of fail, and its fabrication methods are different for each manufacturer. Normally, pressure vessels and its parts are fabricated by welding, which may change local properties of metals. The head of a pressure vessel is a very important structural component and it is fabricated by welding and mechanical conformation. Because its excellent mechanical properties, de steel A-516 Grade 70 is often used in manufacturing of large pressure vessels that are subjected to high pressure and temperature, but was verified that its mechanical resistance is decreased when submitted to a tension relief heat treatment. By experience it was defined that before mechanical conformation of the head of a large pressure vessel, the steel should be submitted to a stress relief heat treatment in order to facilitate the mechanical conformation, but there is no quantitative analysis to prove this method and study its possible risks. In the present work the steel A-516 Grade 70 demonstrated a decrease of its mechanical resistance when submitted to a stress relief heat treatment, but keeping above the minimum limit defined in the literature. By other side its ductility was substantially increased, being possible to deduce that the stress relief heat treatment before mechanical conformation is a viable e recommended technique, but with reservations. With the data acquired during the fabrication e preparation of the specimen and the result of the tests, it was possible to elaborate a welding procedure that provides the same results obtained in this present work

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aluminum alloys are widely used in industry, because they combine different mechanical properties according to the alloying elements used in addition to thermal and mechanical treatments performed, resulting in materials with good weight/resistance relation. The 7XXX series alloys are worked heat treatable alloys commonly used in the aerospace industry, especially due to their high mechanical properties obtained after aging heat treatment, which increases the interest around 7075 alloy. Some studies with alloys which can be aged show that it is possible that cold word processes affect the results of aging. Thus, this study was intended to verify the influence of the aging process of AA 7075 alloy. There were three routes of aging with specimens previously treated thermally. In the first route T6 treatment was performed with a annealed specimen and other in solid solution. The second was the natural aging in a annealed specimen. In the last route was done aging by steps with a annealed specimen and other in solid solution with the intention to reduce the effects of natural aging. The results show that the routes 1 and 3 had similar hardness for all the samples, showing that the validity of Route 3 as an alternative and also the hardening did not affect the hardness at the end of the process, significantly reducing the time required for the highest hardness. Finally, natural aging was less effective in increasing hardness

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work approaches the main methods of plastic deformation of metals, with a focus on the deep drawing process. The mechanical properties were evaluated with the tension tests. It is presented the aluminum alloys designation, followed by applying heat treatments and the designation of tempers. The manufacture of aluminum beverage cans is described step by step, in general terms. The main objective is to analyze how different cans background geometries have great influence on the dome reversal. To be able to achieve the goal it was necessary to use cans of different manufacturers, which were used in buckle tests to obtain the reversal pressures, tensile tests and geometric analysis. Finally empirical equations were obtained correlating these variables, and it was observed that the conformation of reforming change significantly it's behavior

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the large use of steel in several processes around the world, there is the increasingly concern to find new materials and/or optimization and improvement of the processes, as the need to reduce the cost and a productivity increase in the primary industry, such as the siderurgy. The rolling is the most used mechanical process in the world and therefore is required the development of new tools in high volume and with optimum characteristics to support the market demand. Forged rolls used are for rolling. These rolls have heat treatment that has the purpose to achieve the appropriated mechanical properties to support the variables of the rolling process. The objective of this work is to analyze the hardness profile and the microstructure a tool steel similar to AISI A2, forged in an opened die process and submitted to heat treatment with water-cooling. The results allowed plotting a hardness profile and performing a microstructure analysis, and whereby to confirm that the heat treatment is not a quenching, but it is a material beneficiation by the hardening of superficial layer, since there is no martensitic microstructure. Therefore, this paper provides the support to future studies about the possibility to perform enhancements in this thermal heat made in the rolls produced at Gerdau Plant in Pindamonhangaba

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the large use of steel in several processes around the world, there is the increasingly concern to find new materials and/or optimization and improvement of the processes, as the need to reduce the cost and a productivity increase in the primary industry, such as the siderurgy. The rolling is the most used mechanical process in the world and therefore is required the development of new tools in high volume and with optimum characteristics to support the market demand. Forged rolls used are for rolling. These rolls have heat treatment that has the purpose to achieve the appropriated mechanical properties to support the variables of the rolling process. The objective of this work is to analyze the hardness profile and the microstructure a tool steel similar to AISI A2, forged in an opened die process and submitted to heat treatment with water-cooling. The results allowed plotting a hardness profile and performing a microstructure analysis, and whereby to confirm that the heat treatment is not a quenching, but it is a material beneficiation by the hardening of superficial layer, since there is no martensitic microstructure. Therefore, this paper provides the support to future studies about the possibility to perform enhancements in this thermal heat made in the rolls produced at Gerdau Plant in Pindamonhangaba