993 resultados para Metabolic Networks
Resumo:
Dissertação de mestrado em Bioinformática
MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks.
Resumo:
SUMMARY: MetaNetX.org is a website for accessing, analysing and manipulating genome-scale metabolic networks (GSMs) as well as biochemical pathways. It consistently integrates data from various public resources and makes the data accessible in a standardized format using a common namespace. Currently, it provides access to hundreds of GSMs and pathways that can be interactively compared (two or more), analysed (e.g. detection of dead-end metabolites and reactions, flux balance analysis or simulation of reaction and gene knockouts), manipulated and exported. Users can also upload their own metabolic models, choose to automatically map them into the common namespace and subsequently make use of the website's functionality. Availability and implementation: MetaNetX.org is available at http://metanetx.org. CONTACT: help@metanetx.org.
Resumo:
Genome-scale metabolic network reconstructions are now routinely used in the study of metabolic pathways, their evolution and design. The development of such reconstructions involves the integration of information on reactions and metabolites from the scientific literature as well as public databases and existing genome-scale metabolic models. The reconciliation of discrepancies between data from these sources generally requires significant manual curation, which constitutes a major obstacle in efforts to develop and apply genome-scale metabolic network reconstructions. In this work, we discuss some of the major difficulties encountered in the mapping and reconciliation of metabolic resources and review three recent initiatives that aim to accelerate this process, namely BKM-react, MetRxn and MNXref (presented in this article). Each of these resources provides a pre-compiled reconciliation of many of the most commonly used metabolic resources. By reducing the time required for manual curation of metabolite and reaction discrepancies, these resources aim to accelerate the development and application of high-quality genome-scale metabolic network reconstructions and models.
Resumo:
MetaNetX is a repository of genome-scale metabolic networks (GSMNs) and biochemical pathways from a number of major resources imported into a common namespace of chemical compounds, reactions, cellular compartments-namely MNXref-and proteins. The MetaNetX.org website (http://www.metanetx.org/) provides access to these integrated data as well as a variety of tools that allow users to import their own GSMNs, map them to the MNXref reconciliation, and manipulate, compare, analyze, simulate (using flux balance analysis) and export the resulting GSMNs. MNXref and MetaNetX are regularly updated and freely available.
Resumo:
Background Obligate endoparasites often lack particular metabolic pathways as compared to free-living organisms. This phenomenon comprises anabolic as well as catabolic reactions. Presumably, the corresponding enzymes were lost in adaptation to parasitism. Here we compare the predicted core metabolic graphs of obligate endoparasites and non-parasites (free living organisms and facultative parasites) in order to analyze how the parasites' metabolic networks shrunk in the course of evolution. Results Core metabolic graphs comprising biochemical reactions present in the presumed ancestor of parasites and non-parasites were reconstructed from the Kyoto Encyclopedia of Genes and Genomes. While the parasites' networks had fewer nodes (metabolites) and edges (reactions), other parameters such as average connectivity, network diameter and number of isolated edges were similar in parasites and non-parasites. The parasites' networks contained a higher percentage of ATP-consuming reactions and a lower percentage of NAD-requiring reactions. Control networks, shrunk to the size of the parasites' by random deletion of edges, were scale-free but exhibited smaller diameters and more isolated edges. Conclusions The parasites' networks were smaller than those of the non-parasites regarding number of nodes or edges, but not regarding network diameters. Network integrity but not scale-freeness has acted as a selective principle during the evolutionary reduction of parasite metabolism. ATP-requiring reactions in particular have been retained in the parasites' core metabolism while NADH- or NADPH-requiring reactions were lost preferentially.
Resumo:
BACKGROUND: Despite recent algorithmic and conceptual progress, the stoichiometric network analysis of large metabolic models remains a computationally challenging problem. RESULTS: SNA is a interactive, high performance toolbox for analysing the possible steady state behaviour of metabolic networks by computing the generating and elementary vectors of their flux and conversions cones. It also supports analysing the steady states by linear programming. The toolbox is implemented mainly in Mathematica and returns numerically exact results. It is available under an open source license from: http://bioinformatics.org/project/?group_id=546. CONCLUSION: Thanks to its performance and modular design, SNA is demonstrably useful in analysing genome scale metabolic networks. Further, the integration into Mathematica provides a very flexible environment for the subsequent analysis and interpretation of the results.
Resumo:
The concept of elementary vector is generalised to the case where the steady-state space of the metabolic network is not a flux cone but is a general polyhedron due to further inhomogeneous constraints on the flows through some of the reactions. On one hand, this allows to selectively enumerate elementary modes which satisfy certain optimality criteria and this can yield a large computational gain compared with full enumeration. On the other hand, in contrast to the single optimum found by executing a linear program, this enables a comprehensive description of the set of alternate optima often encountered in flux balance analysis. The concepts are illustrated on a metabolic network model of human cardiac mitochondria.
Resumo:
Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.
Resumo:
UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway.
Resumo:
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.
Resumo:
Cortical bones, essential for mechanical support and structure in many animals, involve a large number of canals organized in intricate fashion. By using state-of-the art image analysis and computer graphics, the 3D reconstruction of a whole bone (phalange) of a young chicken was obtained and represented in terms of a complex network where each canal was associated to an edge and every confluence of three or more canals yielded a respective node. The representation of the bone canal structure as a complex network has allowed several methods to be applied in order to characterize and analyze the canal system organization and the robustness. First, the distribution of the node degrees (i.e. the number of canals connected to each node) confirmed previous indications that bone canal networks follow a power law, and therefore present some highly connected nodes (hubs). The bone network was also found to be partitioned into communities or modules, i.e. groups of nodes which are more intensely connected to one another than with the rest of the network. We verified that each community exhibited distinct topological properties that are possibly linked with their specific function. In order to better understand the organization of the bone network, its resilience to two types of failures (random attack and cascaded failures) was also quantified comparatively to randomized and regular counterparts. The results indicate that the modular structure improves the robustness of the bone network when compared to a regular network with the same average degree and number of nodes. The effects of disease processes (e. g., osteoporosis) and mutations in genes (e.g., BMP4) that occur at the molecular level can now be investigated at the mesoscopic level by using network based approaches.