115 resultados para Mercaptoethanol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of Cibacron blue F3GA with ribosome inactivating proteins, ricin, ricin A-chain and momordin has been investigated using difference absorption spectroscopy. Ricin was found to bind the dye with a 20- and 2-fold lower affinity than ricin A-chain and momordin, respectively. A time dependent increase in the amplitude of Cibacron blue difference spectrum in the presence of ricin was observed on addition of beta-mercaptoethanol. Analysis of the kinetic profile of this increase showed a biphasic phenomenon and the observed rates were found to be independent of the concentration of beta-mercaptoethanol. Kinetics of reduction of the intersubunit disulphide bond in ricin by beta-mercaptoethanol showed that reduction pet se is a second order reaction. Therefore, the observed changes in the difference spectra of Cibacron blue probably indicate a slow change in the conformation of ricin, triggered by reduction of the intersubunit disulphide bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PbS quantum dots capped with mercaptoethanol (C2H5OSH) have been synthesized in poly vinyl alcohol and used to investigate their photoluminescence (PL) response to various ions such as zinc (Zn), cadmium (Cd), mercury (Hg), silver (Ag), copper (Cu), iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr) and nickel (Ni). The enhancement in the PL intensity was observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations was quite high, compared to that of Zn and Cd. It was observed that the change in Pb and S molar ratio has profound effect on the sensitivity of these ions. These results indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu quenched the photoluminescence. In Cd based QDs related ion probing, Hg and Cu was found to have quenching properties, however, our PbS QDs have quenching property only for Cu ions. This was attributed to the formation HgS at the surface that has bandgap higher than PbS. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa). which is an interesting feature for metal ion detectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrolysis of p-nitrophenyl-beta-D-glucoside by the beta-glucosidase of a thermophilic and cellulolytic fungus, Humicola insolens was stimulated by two-fold in the presence of high concentrations of beta-mercaptoethanol. This enzyme did not have any free sulfhydryl groups and high concentrations of beta-mercaptoethanol (5% v/v) reduced all of the three disulfide bonds present in the enzyme. In contrast, the hydrolysis of cellobiose and cellulose polymers was inhibited by 50% under the same conditions. Sodium dodecyl sulfate (1% w/v) even in combination with beta-mercaptoethanol did not show any significant effects on this enzyme. These unusual properties suggest that this enzyme may be of significant importance for understanding the structure of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numbers of Lucilia cuprina (Australian sheep blowfly), Chrysomya spp., and Calliphora spp. blowflies caught on sticky traps baited with various synthetic attractants or a standard liver/sodium sulfide attractant in western Queensland were recorded. Numbers of each genus collected were influenced by the composition of the chemical attractants. Attractant mixtures based on 2-mercaptoethanol, indole, butanoic/pentanoic acid, and a sodium sulfide solution gave 5- to 20-fold higher L. cuprina catches than the liver standard. These blends attracted similar numbers of Chrysomya spp. (0.85–2.7× ) and fewer Calliphora spp. (0.02–0.2× ) compared to the liver standard. These synthetic attractants were more effective and selective for L. cuprina than the standard liver/sodium sulfide attractant, and they can be packaged in controlled-release dispensers to generate constant, prolonged release of the attractant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gossypol, a polyphenolic compound isolated from cotton plant was found to degrade pBR322 DNA Image in a reaction which required the presence of a metal ion, a reducing agent (2-mercaptoethanol) and oxygen as revealed after agarose gel electrophoresis. Fe3+ and Co2+ showed maximum degradation whereas addition of Ca2+ and Mg2+ prevented the gossypol mediated DNA damage. Gossypol caused degradation of rat liver DNA incubated Image even in the absence of added metal ions and 2-mercaptoethanol. Incubation of intact rat liver nuclei with gossypol reveled DNA degradation and nuclei isolated from rats treated with gossypol Image showed higher succestibility to DNA fragmentation when incubated with gossypol Image than control nuclei. EcoRl and AIuI digestion of DNA isolated from gossypol treated rats gave clear cut evidence for DNA degradation. These observations indicate that gossypol is genotoxic and considereable care has to be exercised in its use. SDS, sodium dodecayl sulphate; TE buffer, Tris-HCL-EDTA buffer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chitooligosaccharide specific lectin (Luffa acutangula agglutinin) has been purified from the exudate of ridge gourd fruits by affinity chromatography on soybean agglutininglycopeptides coupled to Sepharose-6B. The affinity purified lectin was found homogeneous by polyacrylamide gel electrophoresis, in sodium dodecyl sulphate-polyacrylamide gels, by gel filtration on Sephadex G-100 and by sedimentation velocity experiments. The relative molecular weight of this lectin is determined to be 48,000 ± 1,000 by gel chromatography and sedimentation equilibrium experiments. The sedimentation coefficient (S20, w) was obtained to be 4·06 S. The Stokes’ radius of the protein was found to be 2·9 nm by gel filtration. In sodium dodecyl sulphate-polyacrylamide gel electrophoresis the lectin gave a molecular weight of 24,000 in the presence as well as absence of 2-mercaptoethanol. The subunits in this dimeric lectin are therefore held by non-covalent interactions alone. The lectin is not a glycoprotein and circular dichroism spectral studies indicate that this lectin has 31% α-helix and no ß-sheet. The lectin is found to bind specifically to chitooligosaccharides and the affinity of the lectin increases with increasing oligosaccharide chain length as monitored by near ultra-violetcircular dichroism and intrinsic fluorescence titration. The values of ΔG, ΔΗ and ΔS for the binding process showed a pronounced dependence on the size of the oligosaccharide. The values for both ΔΗ and ΔS show a significant increase with increase in the oligosaccharide chain length showing that the binding of higher oligomers is progressively more favoured thermodynamically than chitobiose itself. The thermodynamic data is consistent with an extended binding site in the lectin which accommodates a tetrasaccharide. Based on the thermodynamic data, blue shifts and fluorescence enhancement, spatial orientation of chitooligosaccharides in the combining site of the lectin is assigned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspartate transcarbamylase is purified from mung bean seedlings by a series of steps involving manganous sulphate treatment, ammonium sulphate fractionation, DEAE-cellulose chromatography, followed by a second ammonium sulphate fractionation and finally gel filtration on Sephadex-G 100. The enzyme is homogeneous on ultracentrifugation and on polyacrylamide gel electrophoresis. It functions optimally at 55°C. It has two pH optima, one at 8.0 and the other at 10.2. The enzyme follows Michaelis-Menten kinetics with l-aspartate as the variable substrate. However, it exhibits sigmoid saturation curves at both the pH optima when the concentration of carbamyl phosphate is varied. The enzyme is allosterically inhibited by UMP at both the pH optima. Increasing phosphorylation of the uridine nucleotide decreases the inhibitory effect. The enzyme is desensitized to inhibition by UMP on treatment with p-hydroxymercuribenzoate, gel electrophoresis indicating that the enzyme is dissociated by this treatment; the dissociated enzyme can be reassociated by treatment with 2-mercaptoethanol. The properties of the mung bean enzyme are compared with the enzyme from other sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspartate transcarbamylase is purified from mung bean seedlings by a series of steps involving manganous sulphate treatment, ammonium sulphate fractionation, DEAE-cellulose chromatography, followed by a second ammonium sulphate fractionation and finally gel filtration on Sephadex-G 100. The enzyme is homogeneous on ultracentrifugation and on polyacrylamide gel electrophoresis. It functions optimally at 55°C. It has two pH optima, one at 8.0 and the other at 10.2. The enzyme follows Michaelis-Menten kinetics with l-aspartate as the variable substrate. However, it exhibits sigmoid saturation curves at both the pH optima when the concentration of carbamyl phosphate is varied. The enzyme is allosterically inhibited by UMP at both the pH optima. Increasing phosphorylation of the uridine nucleotide decreases the inhibitory effect. The enzyme is desensitized to inhibition by UMP on treatment with p-hydroxymercuribenzoate, gel electrophoresis indicating that the enzyme is dissociated by this treatment; the dissociated enzyme can be reassociated by treatment with 2-mercaptoethanol. The properties of the mung bean enzyme are compared with the enzyme from other sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase, the first enzyme in the pathway for interconversion of C1 fragments, was purified to homogeneity for the first time from any plant source. The enzyme from 72-h mung bean (Vigna radiata L.) seedlings was isolated using Blue Sepharose CL-6B and folate-AH-Sepharose-4B affinity matrices and had the highest specific activity (1.33 micromoles of HCHO formed per minute per milligram protein) reported hitherto. The enzyme preparation was extremely stable in the presence of folate or L-serine. Pyridoxal 5'-phosphate, ethylenediaminetetraacetate and 2-mercaptoethanol prevented the inactivation of the enzyme during purification. The enzyme functioned optimally at pH 8.5 and had two temperature maxima at 35 and 55°C. The Km values for serine were 1.25 and 68 millimolar, corresponding to Vmax values of 1.8 and 5.4 micromoles of HCHO formed per minute per milligram protein, respectively. The K0.5 value for L-tetrahydrofolate (H4folate) was 0.98 millimolar. Glycine, the product of the reaction and D-cycloserine, a structural analog of D-alanine, were linear competitive inhibitors with respect to L-serine with Ki values of 2.30 and 2.02 millimolar, respectively. Dichloromethotrexate, a substrate analog of H4folate was a competitive inhibitor when H4folate was the varied substrate. Results presented in this paper suggested that pyridoxal 5'-phosphate may not be essential for catalysis.The sigmoid saturation pattern of H4folate (nH = 2.0), one of the substrates, the abolition of sigmoidicity by NADH, an allosteric positive effector (nH = 1.0) and the increase in sigmoidicity by NAD+ and adenine nucleotides, negative allosteric effectors (nH = 2.4) clearly established that this key enzyme in the folate metabolism was an allosteric protein. Further support for this conclusion were the observations that (a) serine saturation exhibited an intermediary plateau region; (b) partial inhibition by methotrexate, aminopterin, O-phosphoserine, DL-{alpha}-methylserine and DL-O-methylserine; (c) subunit nature of the enzyme; and (d) decrease in the nH value from 2.0 for H4folate to 1.5 in presence of L-serine. These results highlight the regulatory nature of mung bean serine hydroxymethyltransferase and its possible involvement in the modulation of the interconversion of folate coenzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benzoate-4-hydroxylase from a soil pseudomonad was isolated and purified about 50-fold. Polyacrylamide gel electrophoresis of this enzyme preparation showed one major band and one minor band. The approximate molecular weight of the enzyme was found to be 120,000. Benzoate-4-hydroxylase was most active around pH 7.2. The enzyme showed requirements for tetrahydropteridine as the cofactor and molecular oxygen as the electron acceptor. NADPH, NADH, dithiothreitol, β-mercaptoethanol, and ascorbic acid when added alone to the reaction mixture did not support the hydroxylation reaction to any significant extent. However, when these compounds were added together with tetrahydropteridine, they stimulated the hydroxylation. This stimulation is probably due to the reduction of the oxidized pteridine back to the reduced form. This enzyme was activated by Fe2+ and benzoate. It was observed that benzoate-4-hydroxylase could catalyze the oxidation of NADPH in the presence of benzoate,p-aminobenzoate, p-nitrobenzoate, p-chlorobenzoate, and p-methylbenzoate, with only benzoate showing maximum hydroxylation. Inhibition studies with substrate analogs and their kinetic analysis revealed that the carboxyl group is involved in binding the substrate to the enzyme at the active center. The enzyme catalyzed the conversion of 1 mol of benzoate to 1 mol of p-hydroxybenzoate with the consumption of slightly more than 1 mol of NADPH and oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles of Fe3O4 were synthesized by co-precipitation in an aqueous solution containing ferrous and ferric salts (1:2) at varying pH with ammonia as a base. It was found that the value of pH influences the reaction mechanism for the formation of Fe3O4. Furthermore, the addition of mercaptoethanol significantly reduced the crystalline size of Fe3O4 nanoparticles from 15.03 to 8.02 nm. X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles were epsilon-Fe2O3 or Fe3O4 phase. To further prove the composition of the product, as-prepared Fe3O4 were examined by X-rayphotoelectron spectroscopy (XPS). Magnetic properties of the obtained particles were determined by vibrating sample magnetometer (VSM). Further analysis of the X-ray studies shows that while maintaining a pH value of 6 and 9 in a solution containing iron salts II and III ions produces epsilon-Fe2O3. Whereas a pH value of 11 produces magnetite (Fe3O4) phase. All of these results show that the pH has a major role in the observed phase formation of (Fe3O4) nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamics of the binding of derivatives of galactose and lactose to a 14 kDa beta-galactoside-binding lectin (L-14) from sheep spleen has been studied in 10 nM phosphate/150 mM NaCl/10 mM beta-mercaptoethanol buffer, pH 7.4, and in the temperature range 285-300 K using titration calorimetry. The single-site binding constants of various sugars for the lectin were in the following order: N-acetyl-lactosamine thiodigalactoside > 4-methylumbelliferyl lactoside > lactose > 4-methylumbelliferyl alpha-D-galactoside > methyl-alpha-galactose > methyl-beta-galactose. Reactions were essentially enthalpically driven with the binding enthalpies ranging from -53.8 kJ/mol for thiodigalactoside at 301 K to -2.2 kJ/mol for galactose at 300 K, indicating that hydrogen-bonding and van der Waals interactions provide the major stabilization for these reactions. However, the binding of 4-methylumbelliferyl-alpha-D-galactose displays relatively favourable entropic contributions, indicating the existence of a non-polar site adjacent to the galactose-binding subsite. From the increments in the enthalpies for the binding of lactose, N-acetyl-lactosamine and thiodigalactoside relative to methyl-beta-galactose, the contribution of glucose binding in the subsite adjacent to that for galactose shows that glucose makes a major contribution to the stability of L-14 disaccharide complexes. Observation of enthalpy-entropy compensation for the recognition of saccharides such as lactose by L-14 and the absence of it for monosaccharides such as galactose, together with the lack of appreciable changes in the heat capacity (delta Cp), indicate that reorganization of water plays an important role in these reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purification and some properties of the enzyme indoleacetaldoxime hydrolyase (EC 4.2.1.29) from the fungus Gibberella fujikuroi, which dehydrates indoleacetaldoxime (IAOX) to indoleacetonitrile (IAN), are described. The enzyme activity in the fungus is present only under certain culture conditions. It is a soluble enzyme, has an optimum pH at 7, shows an energy of activation of —15,670 cal/mole, and has a Michaelis constant of 1.7 × 10−4 Image at 30 °. It appears to be specific for IAOX, and 1 mole of IAN is produced per mole of IAOX utilized. The enzyme is inhibited by a number of aldoximes of which phenylacetaldoxime (PAOX) is the most potent inhibitor. Inhibition by PAOX is competitive (Ki = 2.2 × 10−8 Image ). The enzyme is inhibited by SH reagents such as p-hydroxymercuribenzoate and N-ethylmaleimide, and by a number of SH compounds such as cysteine, β-mercaptoethanol, and 2,3-dimercaptopropanol (BAL). However, glutathione activates the enzyme. Metal chelating agents such as 8-OH-quinoline and diethyl dithiocarbamate inhibit the enzyme; the inhibition is partly reversed by ferric citrate. Ascorbic acid, and particularly dehydroascorbic acid (DHA), are good activators of the enzyme. Several other biological oxidants had either no action or had a slight effect. Potassium cyanide activates the enzyme at low concentration but inhibits at higher concentrations. Reduction of the enzyme with NaBH4 reduces activity, and the effect is partly reversed by pyridoxal phosphate and also by DHA. The above properties indicate that both an SH function and an oxidized function are required for activity.