862 resultados para Membership functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous papers from the authors fuzzy model identification methods were discussed. The bacterial algorithm for extracting fuzzy rule base from a training set was presented. The Levenberg-Marquardt algorithm was also proposed for determining membership functions in fuzzy systems. In this paper the Levenberg-Marquardt technique is improved to optimise the membership functions in the fuzzy rules without Ruspini-partition. The class of membership functions investigated is the trapezoidal one as it is general enough and widely used. The method can be easily extended to arbitrary piecewise linear functions as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand- avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to develop a novel Cross-Entropy (CE) optimization-based fuzzy controller for Unmanned Aerial Monocular Vision-IMU System (UAMVIS) to solve the seeand-avoid problem using its accurate autonomous localization information. The function of this fuzzy controller is regulating the heading of this system to avoid the obstacle, e.g. wall. In the Matlab Simulink-based training stages, the Scaling Factor (SF) is adjusted according to the specified task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the collison avoidance performance. After obtained the optimal SF and MF, 64% of rules has been reduced (from 125 rules to 45 rules), and a large number of real flight tests with a quadcopter have been done. The experimental results show that this approach precisely navigates the system to avoid the obstacle. To our best knowledge, this is the first work to present the optimized fuzzy controller for UAMVIS using Cross-Entropy method in Scaling Factors and Membership Functions optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authors analyses questions of the subjective uncertainty and inexactness situations in the moment of using expert information and another questions which are connected with expert information uncertainty by fuzzy sets with rough membership functions in this article. You can find information about integral problems of individual expert marks and about connection among total marks “degree of inexactness” with sensibility of measurement scale. A lot of different situation which are connected with distribution of the function accessory significance and orientation of the concrete take to task decision making are analyses here.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, the fuzzy Lyapunov function approach is considered for stabilising continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing slack LMI variables into the problem formulation. The relaxation conditions given can also be used with a class of fuzzy Lyapunov functions which also depends on the membership function first-order time-derivative. The stability results are thus extended to systems with large number of rules under membership function order relations and used to design parallel-distributed compensation (PDC) fuzzy controllers which are also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilising conditions presented. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many academic researchers have conducted studies on the selection of design-build (DB) delivery method; however, there are few studies on the selection of DB operational variations, which poses challenges to many clients. The selection of DB operational variation is a multi-criteria decision making process that requires clients to objectively evaluate the performance of each DB operational variation with reference to the selection criteria. This evaluation process is often characterized by subjectivity and uncertainty. In order to resolve this deficiency, the current investigation aimed to establish a fuzzy multicriteria decision-making (FMCDM) model for selecting the most suitable DB operational variation. A three-round Delphi questionnaire survey was conducted to identify the selection criteria and their relative importance. A fuzzy set theory approach, namely the modified horizontal approach with the bisector error method, was applied to establish the fuzzy membership functions, which enables clients to perform quantitative calculations on the performance of each DB operational variation. The FMCDM was developed using the weighted mean method to aggregate the overall performance of DB operational variations with regard to the selection criteria. The proposed FMCDM model enables clients to perform quantitative calculations in a fuzzy decision-making environment and provides a useful tool to cope with different project attributes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An adaptive learning scheme, based on a fuzzy approximation to the gradient descent method for training a pattern classifier using unlabeled samples, is described. The objective function defined for the fuzzy ISODATA clustering procedure is used as the loss function for computing the gradient. Learning is based on simultaneous fuzzy decisionmaking and estimation. It uses conditional fuzzy measures on unlabeled samples. An exponential membership function is assumed for each class, and the parameters constituting these membership functions are estimated, using the gradient, in a recursive fashion. The induced possibility of occurrence of each class is useful for estimation and is computed using 1) the membership of the new sample in that class and 2) the previously computed average possibility of occurrence of the same class. An inductive entropy measure is defined in terms of induced possibility distribution to measure the extent of learning. The method is illustrated with relevant examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a method for the tuning the membership functions of a Mamdani type Fuzzy Logic Controller (FLC) using the Clonal Selection Algorithm(CSA) a model of the Artificial Immune System(AIS) paradigm is examined. FLC's are designed for two problems, firstly the linear cart centering problem and secondly the highly nonlinear inverted pendulum problem. The FLC tuned by AIS is compared with FLC tuned by GA. In order to check the robustness of the designed PLC's white noise was added to the system, further, the masses of the cart and the length and mass of the pendulum are changed. The PLC's were also tested in the presence of faulty rules. Finally, Kruskal Wallis test was performed to compare the performance of the GA and AIS. An insight into the algorithms are also given by studying the effect of the important parameters of GA and AIS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.