982 resultados para Melting Temperature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like the metal and semiconductor nanoparticles, the melting temperature of free inert-gas nanoparticles decreases with decreasing size. The variation is linear with the inverse of the particle size for large nanoparticles and deviates from the linearity for small nanoparticles. The decrease in the melting temperature is slower for free nanoparticles with non-wetting surfaces, while the decrease is faster for nanoparticles with wetting surfaces. Though the depression of the melting temperature has been reported for inert-gas nanoparticles in porous glasses, superheating has also been observed when the nanoparticles are embedded in some matrices. By using a simple classical approach, the influence of size, geometry and the matrix on the melting temperature of nanoparticles is understood quantitatively and shown to be applicable for other materials. It is also shown that the classical approach can be applied to understand the size-dependent freezing temperature of nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We comment on the paradox that seems to exist about a correlation between the size-dependent melting temperature and the forbidden energy gap of nanoparticles. By analyzing the reported expressions for the melting temperature and the band gap of nanoparticles, we conclude that there exists a relation between these two physical quantities. However, the variations of these two quantities with size for semiconductors are different from that of metals. (C) 2010 American Institute of Physics.[doi:10.1063/1.3466920].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly.

We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments.

We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the melting temperature is a design criterion.

We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties whose determination requires extensive sampling of atomic configuration space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bismuth (Bi)-doped and Bi/Dy co-doped chalcohalide glasses are investigated as promising materials for amplifiers in optical communication. The samples synthesized at lower melting temperatures (MTs) are characterized by more intensified infrared emissions. With respect to the redox process of a liquid mixture at different MTs, we attribute an emission at 1230 nm to low-valent Bi ions. The lower MT favors the formation of LVB ions, i.e. Bi+ or Bi2+, while the higher MT promotes the production of higher-valent Bi ions Bi3+. An enhanced broadband infrared luminescence with the full-width at half-maximum over 200 nm is achieved from the present Bi/Dy co-doped chalcohalide glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSc) and dynamic light scattering (DLS) were used to obtain the gel to liquid-crystalline phase transition temperature (T-m) and the apparent hydrodynamic radius (R-h) of spontaneously formed cationic vesicles of dialkyldimethylammonium bromide salts (CnH2n+1)(2)(CH3)(2)N+center dot Br-, with varying chain lengths. The preparation of cationic vesicles from aqueous solution of these surfactants, for n = 12, 14, 16 and 18 (DDAB, DTDAB, DHDAB and DODAB, respectively), requires the knowledge of the surfactant gel to liquid-crystalline phase transition temperature, or melting temperature (T-m) since below this temperature these surfactants are poorly or not soluble in water. That series of cationic surfactants has been widely investigated as vesicle-forming surfactants, although C-12 and C-18, DDAB and DODAB are by far the most investigated from this series. The dependence of T-m of these surfactants on the number n of carbons in the surfactant tails is reported. The T-m obtained by DSC increases non-linearly with n, and the vesicle apparent radius R-h is about the same for DHDAB and DODAB, but much smaller for DDAB. (c) 2006 Elsevier B.V.. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical current and melting temperature of a vortex system are analyzed. Calculations are made for a two-dimensional film at finite temperature with two kinds of periodic pinning: hexagonal and Kagomé. A transport current parallel and perpendicular to the main axis of the pinning arrays is applied and molecular dynamics simulations are used to calculate the vortex velocities to obtain the critical currents. The structure factor and displacements of vortices at zero transport current are used to obtain the melting temperature for both pinning arrays. The critical currents are higher for the hexagonal pinning lattice and anisotropic for both pinning arrays. This anisotropy is stronger with temperature for the hexagonal array. For the Kagomé pinning lattice, our analysis shows a multi stage phase melting; that is, as we increase the temperature, each different dynamic phase melts before reaching the melting temperature. Both the melting temperature and critical currents are larger for the hexagonal lattice, indicating the role for the interstitial vortices in decreasing the pinning strength. © 2012 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rubredoxin protein from the hyperthermophilic archaebacterium Pyrococcus furiosus was examined by a hydrogen exchange method. Even though the protein does not exhibit reversible thermal unfolding, one can determine its stability parameters—free energy, enthalpy, entropy, and melting temperature—and also the distribution of stability throughout the protein, by using hydrogen exchange to measure the reversible cycling of the protein between native and unfolded states that occurs even under native conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The melting of spherical nanoparticles is considered from the perspective of heat flow in a pure material and as a moving boundary (Stefan) problem. The dependence of the melting temperature on both the size of the particle and the interfacial tension is described by the Gibbs-Thomson effect, and the resulting two-phase model is solved numerically using a front-fixing method. Results show that interfacial tension increases the speed of the melting process, and furthermore, the temperature distribution within the solid core of the particle exhibits behaviour that is qualitatively different to that predicted by the classical models without interfacial tension.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs--Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs--Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At low temperature (below its freezing/melting temperature), liquid water under confinement is known to exhibit anomalous dynamical features. Here we study structure and dynamics of water in the grooves of a long DNA duplex using molecular dynamics simulations with TIP5P potential at low temperature. We find signatures of a dynamical transition in both translational and orientational dynamics of water molecules in both the major and the minor grooves of a DNA duplex. The transition occurs at a slightly higher temperature (TGL ≈ 255 K) than the temperature at which the bulk water is found to undergo a dynamical transition, which for the TIP5P potential is at 247 K. Groove water, however, exhibits markedly different temperature dependence of its properties from the bulk. Entropy calculations reveal that the minor groove water is ordered even at room temperature, and the transition at T ≈ 255 K can be characterized as a strong-to-strong dynamical transition. Confinement of water in the grooves of DNA favors the formation of a low density four-coordinated state (as a consequence of enthalpy−entropy balance) that makes the liquid−liquid transition stronger. The low temperature water is characterized by pronounced tetrahedral order, as manifested in the sharp rise near 109° in the O−O−O angle distribution. We find that the Adams−Gibbs relation between configurational entropy and translational diffusion holds quite well when the two quantities are plotted together in a master plot for different region of aqueous DNA duplex (bulk, major, and minor grooves) at different temperatures. The activation energy for the transfer of water molecules between different regions of DNA is found to be weakly dependent on temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different nanostructures such as nanowires, prism-shaped nanoparticles, etc. The model has also been modified to understand the melting of supported nanoparticles and superheating of embedded nanoparticles. In this article, we have reviewed the melting behaviour of nanostructures reported in the literature since 1909.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the size-dependent melting of nanotubes based on a thermodynamic approach and shown that the melting temperature of nanotubes depends on the outer radius and on the inner radius through the thickness of the nanotubes. Size-dependent melting of nanowires and thin films has been derived from that of nanotubes. We validate the size-dependent melting of nanotubes, nanowires and thin films by comparing the results with available molecular dynamic simulations and experimental results. It has also been inferred that superheating occurs when the melting starts from the inner surface and proceeds towards the outer surface, while melting point depression occurs when the melting starts from the outer surface and proceeds towards the inner surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the shape transformation of ZnO nanorods/nanotubes at temperatures (similar to 700 degrees C) much lower than the bulk melting temperature (1975 degrees C). With increasing annealing temperature, not only does shape transformation take place but the luminescence characteristics of ZnO are also modified. It is proposed that the observed shape transformation is due to surface diffusion, contradicting the previously reported notion of melting and its link to luminescence. Luminescence in the green-to-red region is observed when excited with a blue laser, indicating the conversion of blue to white light.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A careful comparison of the experimental results reported in the literature reveals different variations of the melting temperature even for the same materials. Though there are different theoretical models, thermodynamic model has been extensively used to understand different variations of size-dependent melting of nanoparticles. There are different hypotheses such as homogeneous melting (HMH), liquid nucleation and growth (LNG) and liquid skin melting (LSM) to resolve different variations of melting temperature as reported in the literature. HMH and LNG account for the linear variation where as LSM is applied to understand the nonlinear behaviour in the plot of melting temperature against reciprocal of particle size. However, a bird's eye view reveals that either HMH or LSM has been extensively used by experimentalists. It has also been observed that not a single hypothesis can explain the size-dependent melting in the complete range. Therefore we describe an approach which can predict the plausible hypothesis for a given data set of the size-dependent melting temperature. A variety of data have been analyzed to ascertain the hypothesis and to test the approach.