904 resultados para Melamine-formaldehyde crosslinked polyester
Resumo:
A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.
Resumo:
Samples of Norway spruce wood were impregnated with a water-soluble melamine formaldehyde resin by using short-term vacuum treatment and long-term immersion, respectively. By means of Fourier transform infrared (FTIR) spectroscopy and UV microspectrophotometry, it was shown that only diffusion during long-term immersion leads to sufficient penetration of melamine resin into the wood structure, the flow of liquids in Norway spruce wood during vacuum treatment being greatly hindered by aspirated pits. After an immersion in aqueous melamine resin solution for 3 days, the resin had penetrated to a depth > 4 mm, which, after polymerization of the resin, resulted in an improvement of hardness comparable to the hardwood beech. A finite element model describing the effect of increasing depth of modification on hardness demonstrated that under the test conditions chosen for this study, a minimum impregnation depth of 2 mm is necessary to achieve an optimum increase in hardness. (C) 2004 Wiley Periodicals, Inc.
Resumo:
We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be crosslinked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat Substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance. scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film oil flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 mu m) to quantify the process for the preparation of hollow rnicrocapsules. Removal of the core in 0.1 N HCI results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH Values to highlight the drug delivery potential of this system.
Resumo:
Fabrication of multilayer microcapsules via layer-by-layer approach through hydrogen bonding has attracted enormous interest due to its strong response to pH. In this communication, we have prepared hydrogen-bonded multilayer microcapsule without using any cross-linking agent by using DNA base pair (adenine and thymine) modified biocompatible polymers. The growth of the self-assembly on colloidal (melamine formaldehyde: MF) particles has been monitored with zeta potential measurement. The capsules were obtained on dissolution of MF particles at 0.1N HCl. The capsules were characterized with scanning electron microscopy. Moreover, we have observed the salt induced microscopic change in self-assembly of this system on the surface of colloidal particles.
Resumo:
Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.
Resumo:
The zeta potential generated at the interface between cement particle surfaces adsorbed with superplasticisers have been studied using electroacoustic technique, which is capable of measuring zeta potential at high concentrated suspensions. The study has been undertaken to examine the differences in the magnitude of the zeta potential for ordinary Portland cement (OPC) and Portland pozzolanic (fly ash) cement (PPC) pastes along with the differential impacts of different types of superplasticisers on both the varieties of cement pastes. In the latter context, the effects of three different types of superplasticisers namely Ligno Sulphonate (LS), Sulphonated Melamine Formaldehyde (SMF) and Sulphonated Naphthalene Formaldehyde (SNF) have been specifically studied. The results show that the cement pastes with PPC shows better dispersion when compared with the OPC. The paper also endeavors to unfold the relationship and significance of cement interaction with three different superplasticisers.
Resumo:
According to ABIPA (2009), Brazil is currently among the major producers of reconstituted wood panels, with one of the main factors for this condition, its climate and its large land area, which allows the cultivation of forests, which provide raw materials for these industries. To establish that market as power, Brazil has invested about R$ 1.3 billion in the last 10 years, yet designed an investment of 0.8 billion dollars over the next three years (BNDES, 2008). With the new investments in this segment, we expect a growth of about 66% in the resin consumption of urea-formaldehyde (GPC, 2009) which should also result in major investments by the companies producing this polymer. Currently employees are mainly three types of resins in the production industry panels, as follows: Urea-Formaldehyde Resin (R-UF), melamine-formaldehyde resin (R-MF) and Phenol-Formaldehyde Resin (R-FF). Especially the cost factor, the urea-formaldehyde resin is the most used by companies producing reconstituted wood panels. The UF-R is a polymer obtained by condensation of urea and formaldehyde reactors (usually batch type), characterized by being a thermosetting polymer which makes it very efficient for bonding wood composites. The urea-formaldehyde polymer, to present a quite complex, it becomes very difficult to predict the exact chain resulting in the process of condensation of urea with formaldehyde, so that a greater knowledge of its characteristics and methods for their characterization can result in greater control in industrial processes and subsequent decrease cost and improve the quality of reconstituted wood panels produced in Brazil
Resumo:
Thermosetting resins are very important in the production of MDF panels. They act as an adhesive in the process of compacting and consolidating the fiberboard. Thermoset resins commonly used in this process are based resin urea formaldehyde (UF) and melamine formaldehyde (MF). The first has a higher demand due to its low cost and good performance in meeting the specifications and standards. The second has a high cost compared to MF resin, but adds greater value to the MDF panel, because it gives greater moisture resistance. The process of manufacture of MDF boards was briefly presented in this study to facilitate the understanding of the work. Samples of thermosetting resins (UF and MF) were subjected to physical-chemical seeking to relate these results to the technological performance presented by their respective samples of MDF boards. Two other samples of MDF panels were subjected to physical and mechanical tests. Results were analyzed and related to the award of their respective thermoset resin. Instruments like Dahmos Trend Manager ® and Grecon Dax 5000 and TG - DSC analysis were used in this study to assist in the analysis of the results. It was observed that the results of the analysis of thermosetting resins were within the specified. Such resins do not directly influence the technological tests provided by the MDF panels, but it has been found that the process variables such as humidity and fiber production rate interfere with the performance of the resin accelerating the reaction and therefore their influence on the physical-mechanical properties of the panels MDF. Samples of MDF panels with UF and MF met all the specifications required by the Brazilian standard with regard to the technological quality. The increased demand for UF resin market is justified by the service specifications...
Resumo:
The aim of this investigation was to study the chemical reactions occurring during the batchwise production of a butylated melamine-formaldehyde resin, in order to optimise the efficiency and economics of the batch processes. The batch process models are largely empirical in nature as the reaction mechanism is unknown. The process chemistry and the commercial manufacturing method are described. A small scale system was established in glass and the ability to produce laboratory resins with the required quality was demonstrated, simulating the full scale plant. During further experiments the chemical reactions of methylolation, condensation and butylation were studied. The important process stages were identified and studied separately. The effects of variation of certain process parameters on the chemical reactions were also studied. A published model of methylolation was modified and used to simulate the methylolation stage. A major result of this project was the development of an indirect method for studying the condensation and butylation reactions occurring during the dehydration and acid reaction stages, as direct quantitative methods were not available. A mass balance method was devised for this purpose and used to collect experimental data. The reaction scheme was verified using this data. The reactions stages were simulated using an empirical model. This has revealed new information regarding the mechanism and kinetics of the reactions. Laboratory results were shown to be comparable with plant scale results. This work has improved the understanding of the batch process, which can be used to improve product consistency. Future work has been identified and recommended to produce an optimum process and plant design to reduce the batch time.
Resumo:
The effect of postcure high energy (gamma), ultraviolet (UV) and thermal treatment on the properties of polyester-melamine clearcoats of a range of compositions has been investigated. Two initial cure conditions were used, of which one was '' optimally '' cured and the other undercured. It was found that postcure treatments, particularly gamma and UV, led to coatings of similar mechanical and thermal properties irrespective of initial cure, although the change in properties on postcure treatment was greater for the under-cured samples. The results were interpreted in terms of the effect of the treatments on the structure of the crosslinked matrices. The study suggests the possibility of the development of a dual-cure process for polyester-melamines, whereby cure optimization and property improvement can be achieved. This could also be used to '' correct '' for small variations in thermal cure levels brought about by adventitious online fluctuations in cure oven conditions.
Resumo:
Thermal analysis methods (differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical thermal analysis) were used to characterize the nature of polyester-melamine coating matrices prepared under nonisothermal, high-temperature, rapid-cure conditions. The results were interpreted in terms of the formation of two interpenetrating networks with different glass-transition temperatures (a cocondensed polyester-melamine network and a self-condensed melamine-melamine network), a phenomenon not generally seen in chemically similar, isothermally cured matrices. The self-condensed network manifested at high melamine levels, but the relative concentrations of the two networks were critically dependent on the cure conditions. The optimal cure (defined in terms of the attainment of a peak metal temperature) was achieved at different oven temperatures and different oven dwell times, and so the actual energy absorbed varied over a wide range. Careful control of the energy absorption, by the selection of appropriate cure conditions, controlled the relative concentrations of the two networks and, therefore, the flexibility and hardness of the resultant coatings. (C) 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Cbem 41: 1603-1621, 2003.
Distribution of melamine in polyester-melamine surface coatings cured under nonisothermal conditions
Resumo:
The influence of experimental cure parameters on the diffusion of reactive species in polyester-melamine thermoset coatings during curing has been investigated with X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared. The diffusion of melamine plays a vital role in the curing process and, therefore, in the ultimate properties of coatings. At a low (