784 resultados para Meiofauna
Resumo:
A simple sampling device is described which produces thin (1 mm) sections of sediment cores. The sampler has been tested on fine sand of an intertidal sandflat and used to study the vertical distribution, over part of a tidal cycle in August, 1981, of migrating algae in the surface 20 mm of sand. Two species of Diplonies and one of Navicula showed marked changes in vertical distribution as the sandflat was flooded, but the distribution of bacteria in the sime samples did not show any change with tidal state. Spatial separation of different species of harpacticoid oppepods within the surface 20 mm of sand has also been demonstrated using this sampler, and the results suggest that different species may occupy particular fine-scale spatial niches within the sand column. The depth separation of nematode species was less well defined, except for two species with apparently the same feeding mode which were isolated from one another vertically.
Resumo:
The effect of temperature on respiration rate has been established, using Cartesian divers, for the meiofaunal sabellid polychaeteManayunkia aestuarina, the free-living nematodeSphaerolaimus hirsutus and the harpacticoid copepodTachidius discipes from a mudflat in the Lynher estuary, Cornwall, U.K. Over the temperature range normally experienced in the field, i.e. 5–20° C the size-compensated respiration rate (R c) was related to the temperature (T) in °C by the equation Log10 R c=-0.635+0.0339T forManayunkia, Log10 R c=0.180+0.0069T forSphaerolaimus and Log10 R c=-0.428+0.0337T forTachidius, being equivalent toQ 10 values of 2.19, 1.17 and 2.17 respectively. In order to derive the temperature response forManayunkia a relationship was first established between respiration rate and body size: Log10 R=0.05+0.75 Log10 V whereR=respiration in nl·O2·ind-1·h-1 andV=body volume in nl. TheQ 10 values are compared with values for other species derived from the literature. From these limited data a dichotomy emerges: species with aQ 10≏2 which apparently feed on diatoms and bacteria, the abundance of which are subject to large short term variability, and species withQ 10≏1 apparently dependent on more stable food sources.
Resumo:
Meiofaunal organisms are mobile multicellular animals that are smaller than macrofauna and larger than microfauna. The size boundaries of meiofauna are generally based on the standardised mesh apertures of sieves with 500 μm (or 1000 μm) as upper and 63 μm (or 42 μm) as lower limits. Meiofauna are ubiquitous, inhabiting most marine substrata, often in high densities. Meiofauna are highly diverse, and several phyla are only known to occur as meiofauna. Owing to their small size and high densities, specialised techniques are required to collect, preserve and examine meiofauna. These are described, along with approaches to determine biomass of these small animals. Their small size also makes them useful candidates for manipulative experiments, and culturing of individual species and approaches to experiments on whole communities are briefly discussed.
Resumo:
The Nazaré Canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at the Iberian Margin at two abyssal depths (~3500 m and ~4400 m). Using new and already published data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen, chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006 and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed by a recovery/recolonisation period in 2007, which was strongly correlated with an increase in the quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages, however, also differed between stations, likely because of the contrasting hydrodynamic and food supply conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at the shallowest canyon station, where the quantity, quality and bioavailability of food material were higher than at the deeper site. The present results suggest that even though inter-annual variations in the sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity between sampling locations in the canyon were more pronounced.