433 resultados para Medul·la òssia
Resumo:
Hemos analizado la supervivencia global (SG) y el tiempo libre de enfermedad (TLE) de los pacientes afectos de un linfoma difuso de célula grande en la era Rituximab. Describimos los resultados de los que recibieron un trasplante alogénico (aloTPH) en los últimos 13 años. La supervivencia global (SG) en los tratados con Rituximab fue de 59% y el tiempo libre de enfermedad (TLE) de 54%. La supervivencia por IPI fue de IPI bajo=82%, intermedio-bajo=54%, intermedio-alto=51%, alto=33%. En el trasplante autólogo la SG fue de 65% y con TLE 54%. La SG para los que recibieron un aloTPH fue de 49% a los 78 meses.
Resumo:
durante el autotrasplante se produce modificación del sistema inmunitario. Este “reset” se ha estudiado en enfermedades autoinmunes, no en alérgicas. El objetivo es evaluar si se pierde la sensibilización alérgica. Estudio prospectivo observacional, se incluyeron 28 pacientes, evaluados por historia clínica, IgE total, ISAC, IgE específica, antes y después del autotrasplante. Seis resultaron alérgicos pre autotrasplante, 83% la IgE específica y la sintomatología desaparecieron. Al comparar IgE total pre autotrasplante de alérgicos y no alérgicos, hubieron diferencias significativas (p=0.013). Parece haber pérdida de respuesta alérgica, tanto “in vivo” como “in vitro”. Serán necesarios estudios más amplios con más potencia estadística.
Resumo:
Strategies for expanding hematopoietic stem cells (HSCs) include coculture with cells that recapitulate their natural microenvironment, such as bone marrow stromal stem/progenitor cells (BMSCs). Plastic-adherent BMSCs may be insufficient to preserve primitive HSCs. Here, we describe a method of isolating and culturing human BMSCs as nonadherent mesenchymal spheres. Human mesenspheres were derived from CD45- CD31- CD71- CD146+ CD105+ nestin+ cells but could also be simply grown from fetal and adult BM CD45--enriched cells. Human mesenspheres robustly differentiated into mesenchymal lineages. In culture conditions where they displayed a relatively undifferentiated phenotype, with decreased adherence to plastic and increased self-renewal, they promoted enhanced expansion of cord blood CD34+ cells through secreted soluble factors. Expanded HSCs were serially transplantable in immunodeficient mice and significantly increased long-term human hematopoietic engraftment. These results pave the way for culture techniques that preserve the self-renewal of human BMSCs and their ability to support functional HSCs.
Resumo:
Vocalization generated by the application of a noxious stimulus is an integrative response related to the affective-motivational component of pain. The rostral ventromedial medulla (RVM) plays an important role in descending pain modulation, and opiates play a major role in modulation of the antinociception mediated by the RVM. Further, it has been suggested that morphine mediates antinociception indirectly, by inhibition of tonically active GABAergic neurons. The current study evaluated the effects of the opioids and GABA agonists and antagonists in the RVM on an affective-motivational pain model. Additionally, we investigated the opioidergic-GABAergic interaction in the RVM in the vocalization response to noxious stimulation. Microinjection of either morphine (4.4 nmo1/0.2 mu l) or bicuculline (0.4 nmo1/0.2 mu l) into the RVM decreased the vocalization index, whereas application of the GABA(A) receptor agonist, musci-mol (0.5 nmo1/0.2 mu l) increased the vocalization index during noxious stimulation. Furthermore, prior microinjection of either the opioid antagonist naloxone (2.7 nmo1/0.2 mu l) or muscimol (0.25 nmo1/0.2 mu l) into the RVM blocked the reduction in vocalization index induced by morphine. These observations suggest an antinociceptive and pro-nociceptive role of the opioidergic and GABAergic neurotransmitters in the RVM, respectively. Our data show that opioids have an antinociceptive effect in the RVM, while GABAergic neurotransmission is related to the facilitation of nociceptive responses. Additionally, our results indicate that the antinociceptive effect of the opioids in the RVM could be mediated by a disinhibition of tonically active GABAergic interneurons in the downstream projection neurons of the descending pain control system; indicating an interaction between the opioidergic and GABAergic pathways of pain modulation. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex. Published by Elsevier Ltd on behalf of IBRO.
Resumo:
Moraes DJA, Bonagamba LGH, Zoccal DB, Machado BH. Modulation of respiratory responses to chemoreflex activation by L-glutamate and ATP in the rostral ventrolateral medulla of awake rats. Am J Physiol Regul Integr Comp Physiol 300: R1476-R1486, 2011. First published March 16, 2011; doi:10.1152/ajpregu.00825.2010.-Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [Botzinger complex (BotC)] and inspiratory [pre-Botzinger complex (pre-BotC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/BotC) enhanced the tachypneic (120 +/- 9 vs. 180 +/- 9 cpm; P < 0.01) and attenuated the pressor response (55 +/- 2 vs. 15 +/- 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-BotC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/BotC reduced chemoreflex tachypneic response (127 +/- 6 vs. 70 +/- 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/BtC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 +/- 2 vs. 157 +/- 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/BtC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/BtC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.
Resumo:
Central chemoreception, the detection of CO(2)/H(+) within the brain and the resultant effect on ventilation, was initially localized at two areas on the ventrolateral medulla, one rostral (rVLM-Mitchell`s) the other caudal (cVLM-Loeschcke`s), by surface application of acidic solutions in anesthetized animals. Focal dialysis of a high CO(2)/H(+) artificial cerebrospinal fluid (aCSF) that produced a milder local pH change in unanesthetized rats (like that with a similar to 6.6 mm Hg increase in arterial P(CO2)) delineated putative chemoreceptor regions for the rVLM at the retrotrapezoid nucleus and the rostral medullary raphe that function predominantly in wakefulness and sleep, respectively. Here we ask if chemoreception in the cVLM can be detected by mild focal stimulation and if it functions in a state dependent manner. At responsive sites just beneath Loeschcke`s area, ventilation was increased by, on average, 17% (P < 0.01) only in wakefulness. These data support our hypothesis that central chemoreception is a distributed property with some sites functioning in a state dependent manner. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
En la medul.la òssia (MO) de pacients sotmesos a trasplantament de sang de cordó umbilical (TSCU) es veu, en ocasions, un augment de precursors limfoides B que poden semblar blasts, plantejant-se el diagnòstic diferencial amb una recidiva leucèmica. L´objectiu d´aquest estudi ha sigut estudiar la incidència del augment de cèl•lules blàstiques no leucèmiques en MO després del TSCU. La incidència acumulada a 1 any del augment de blasts no leucèmics va ser del 26.1% i aquest augment es va relacionar amb una baixa tassa de malaltia d'empelt contra hoste aguda i crònica.
Resumo:
The medulla oblongata (MO) contains a high density of glycinergic synapses and a particularly high concentration of glycine. The aims of this study were to measure directly in vivo the neurochemical profile, including glycine, in MO using a spin-echo-based (1)H MRS sequence at TE?=?2.8 ms and to compare it with three other brain regions (cortex, striatum and hippocampus) in the rat. Glycine was quantified in MO at TE?=?2.8 ms with a Cramér-Rao lower bound (CRLB) of approximately 5%. As a result of the relatively low level of glycine in the other three regions, the measurement of glycine was performed at TE?=?20 ms, which provides a favorable J-modulation of overlapping myo-inositol resonance. The other 14 metabolites composing the neurochemical profile were quantified in vivo in MO with CRLBs below 25%. Absolute concentrations of metabolites in MO, such as glutamate, glutamine, ?-aminobutyrate, taurine and glycine, were in the range of previous in vitro quantifications in tissue extracts. Compared with the other regions, MO had a three-fold higher glycine concentration, and was characterised by reduced (p?<?0.001) concentrations of glutamate (-50?±?4%), glutamine (-54?±?3%) and taurine (-78?±?3%). This study suggests that the functional specialisation of distinct brain regions is reflected in the neurochemical profile.
Resumo:
An imbalance between cholinergic and noradrenergic neurotransmission has been proposed for the etiology of affective disorders. According to this hypothesis, depression would be the result of enhanced cholinergic and reduced noradrenergic neurotransmission. Repeated electroconvulsive shock (ECS) is an effective treatment for depression; moreover, in laboratory animals it induces changes in brain noradrenergic neurotransmission similar to those obtained by chronic treatment with antidepressant drugs (down-regulation of beta-adrenergic receptors). The aim of the present study was to determine whether repeated ECS in rats changes acetylcholinesterase (Achase) activity. Achase controls the level of acetylcholine (Ach) in the synaptic cleft and its levels seem to be regulated by the interaction between Ach and its receptor. Thus, a decrease in Achase activity would suggest decreased cholinergic activity. Adult male Wistar rats received one ECS (80 mA, 0.2 s, 60 Hz) daily for 7 days. Control rats were handled in the same way without receiving the shock. Rats were sacrificed 24 h after the last ECS and membrane-bound and soluble Achase activity was assayed in homogenates obtained from the pons and medulla oblongata. A statistically significant decrease in membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) (control 182.6 ± 14.8, ECS 162.2 ± 14.2, P<0.05) and an increase in soluble Achase activity in the medulla oblongata (control 133.6 ± 4.2, ECS 145.8 ± 12.3, P<0.05) were observed. No statistical differences were observed in Achase activity in the pons. Although repeated ECS induced a decrease in membrane-bound Achase activity, the lack of changes in the pons (control Achase activity: total 231.0 ± 34.5, membrane-bound 298.9 ± 18.5, soluble 203.9 ± 30.9), the region where the locus coeruleus, the main noradrenergic nucleus, is located, does not seem to favor the existence of an interaction between cholinergic and noradrenergic neurotransmission after ECS treatment
Resumo:
Neurons in the rostral and caudal parts of the ventrolateral medulla (VLM) play a pivotal role in the regulation of sympathetic vasomotor activity and blood pressure. Studies in several species, including humans, have shown that these regions contain a high density of AT1 receptors specifically associated with neurons that regulate the sympathetic vasomotor outflow, or the secretion of vasopressin from the hypothalamus. It is well established that specific activation of AT1 receptors by application of exogenous angiotensin II in the rostral and caudal VLM excites sympathoexcitatory and sympathoinhibitory neurons, respectively, but the physiological role of these receptors in the normal synaptic regulation of VLM neurons is not known. In this paper we review studies which have defined the effects of specific activation or blockade of these receptors on cardiovascular function, and discuss what these findings tell us with regard to the physiological role of AT1 receptors in the VLM in the tonic and phasic regulation of sympathetic vasomotor activity and blood pressure.