976 resultados para Mediterranean semiarid Matorral


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se estudian la influencia en el microclima de racimos (temperatura e iluminación) de tres sistemas de conducción en la variedad Syrah en una zona calida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contribu- tions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal vari- ability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediter- ranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity value measured has not showed any differences regarding the control. For these treatments, the survival sapling rates measured were the highest. Sludge, manure and polymers showed a moisture retention capacity slightly more limited than straw and pinus mulch. Likewise, it has been found that the area of usable water by plants was also lower, especially during the months of January and February. This situation is especially sharpened in plots amended with manure. In this treatment, the upper part of the soil profile was below the wilting point for six months a year (from April to August). For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the pinus and straw mulch treatments have been shown as effective methods reducing water stress for plants. In this research, mulching has been proved as a significant method to reduce the mortality sapling rates during the mediterranean summer drought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contribu- tions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal vari- ability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediter- ranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity value measured has not showed any differences regarding the control. For these treatments, the survival sapling rates measured were the highest. Sludge, manure and polymers showed a moisture retention capacity slightly more limited than straw and pinus mulch. Likewise, it has been found that the area of usable water by plants was also lower, especially during the months of January and February. This situation is especially sharpened in plots amended with manure. In this treatment, the upper part of the soil profile was below the wilting point for six months a year (from April to August). For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the pinus and straw mulch treatments have been shown as effective methods reducing water stress for plants. In this research, mulching has been proved as a significant method to reduce the mortality sapling rates during the mediterranean summer drought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In occidental Europe, Spain is one of countries the most severely affected by desertification (Arnalds & Arsher 2000). Particularly, South-eastern Spain is considered as one of the most threatened areas by desertification in Mediterranean Europe (Vallejo 1997). In 2003, the Valencia Regional Forest Service implemented a restoration demonstration project in this area. The project site is a small catchment (25 ha) located in the Albatera municipality. The catchment is highly heterogeneous, with terraced slopes, south-facing slopes and north-facing slopes. The restoration strategy was based on planting evergreen trees and shrubs which can grow quickly after disturbances, and on field treatments aimed at maximizing water collection (micro-catchments, planting furrows), organic amendment (compost), and conservation (tree shelters, mulching). On south landscape unit, the whole category of restoration treatments was applied: water micro-catchment + Tubex tree shelters + mulching & compost, while on north landscape unit: netting tree shelters + mulching & compost only were applied, while in terrace landscape unit: furrows + netting tree shelters + mulching & compost were applied. Survival and growth of the planted seedlings were used as metrics of restoration success. To assess the effects of the treatments applied for soil conservation, soil loss rates (from 2005 to 2009) were evaluated using the erosion pin method. We conclude that, despite the limiting conditions prevailing on the south unit, this landscape unit showed the highest survival and growth plant rates in the area. The best seedling performances on the south landscape unit were probably due to the highest technical efforts applied, consisting in the water micro-catchment installation and the Tubex plant shelters addition. In addition, soil loss rates followed decreasing trends throughout the assessment period. Soil loss rates were highest on south landscape unit in comparison with the other landscape units, due to the more accentuated relief. North landscape unit and terrace unit showed a net soil mass gain, probably reflecting the trapping of sediments produced by plantation works.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study states the potential trace elements (TE’s) content of red soils located at the centre region of Spain, characterized by low rainfall and slight acidity over prolonged weathering periods. For this purpose, three soil profiles from a catena were described, sampled and analyzed. The most notable characteristics are the low organic matter content and the predominantly acidic pH. Illite and kaolinite are the predominant clay minerals. The fertility of the soils is sufficient to provide most of the nutrients required, with very suitable potassium levels. The geochemical characters of this soil are: only few elements remain almost invariable across the profiles and over time, however the majority of them were directly linked with the clay content. These soils are characterized by relatively low levels of some trace elements such as Sr (64.35 mg?kg–1), Ba (303.67 mg?kg–1) and Sc (13.14 mg?kg–1); high levels of other trace elements such as V (103.92 mg?kg–1), Cr (79.9 mg?kg–1), Cu (15.18 mg?kg–1), Hf (10.26 mg?kg–1), Ni (38 mg?kg–1) and Zr (337 mg?kg–1); while the levels for rare earth elements (REE’s) such as La (48.36 mg?kg–1), Ce (95.07 mg?kg–1), Th (13.33 mg?kg–1) and Nd (42.65 mg?kg–1) are significantly high. The distribution of mayor and trace elements was directly re- lated to weathering processes, parent material and anthropogenic activities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3–7.3 kg N ha−1 yr−1) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of β-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While much is known about the factors that control each component of the terrestrial nitrogen (N) cycle, it is less clear how these factors affect total N availability, the sum of organic and inorganic forms potentially available to microorganisms and plants. This is particularly true for N-poor ecosystems such as drylands, which are highly sensitive to climate change and desertification processes that can lead to the loss of soil nutrients such as N. We evaluated how different climatic, abiotic, plant and nutrient related factors correlate with N availability in semiarid Stipa tenacissima grasslands along a broad aridity gradient from Spain to Tunisia. Aridity had the strongest relationship with N availability, suggesting the importance of abiotic controls on the N cycle in drylands. Aridity appeared to modulate the effects of pH, plant cover and organic C (OC) on N availability. Our results suggest that N transformation rates, which are largely driven by variations in soil moisture, are not the direct drivers of N availability in the studied grasslands. Rather, the strong relationship between aridity and N availability could be driven by indirect effects that operate over long time scales (decades to millennia), including both biotic (e.g. plant cover) and abiotic (e.g. soil OC and pH). If these factors are in fact more important than short-term effects of precipitation on N transformation rates, then we might expect to observe a lagged decrease in N availability in response to increasing aridity. Nevertheless, our results suggest that the increase in aridity predicted with ongoing climate change will reduce N availability in the Mediterranean basin, impacting plant nutrient uptake and net primary production in semiarid grasslands throughout this region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrogen (N) deposition has doubled the natural N inputs received by ecosystems through biological N fixation and is currently a global problem that is affecting the Mediterranean regions. We evaluated the existing relationships between increased atmospheric N deposition and biogeochemical indicators related to soil chemical factors and cryptogam species across semiarid central, southern, and eastern Spain. The cryptogam species studied were the biocrust-forming species Pleurochaete squarrosa (moss) and Cladonia foliacea (lichen). Sampling sites were chosen in Quercus coccifera (kermes oak) shrublands and Pinus halepensis (Aleppo pine) forests to cover a range of inorganic N deposition representative of the levels found in the Iberian Peninsula (between 4.4 and 8.1 kg N ha(-1) year(-1)). We extended the ambient N deposition gradient by including experimental plots to which N had been added for 3 years at rates of 10, 20, and 50 kg N ha(-1) year(-1). Overall, N deposition (extant plus simulated) increased soil inorganic N availability and caused soil acidification. Nitrogen deposition increased phosphomonoesterase (PME) enzyme activity and PME/nitrate reductase (NR) ratio in both species, whereas the NR activity was reduced only in the moss. Responses of PME and NR activities were attributed to an induced N to phosphorus imbalance and to N saturation, respectively. When only considering the ambient N deposition, soil organic C and N contents were positively related to N deposition, a response driven by pine forests. The PME/NR ratios of the moss were better predictors of N deposition rates than PME or NR activities alone in shrublands, whereas no correlation between N deposition and the lichen physiology was observed. We conclude that integrative physiological measurements, such as PME/NR ratios, measured on sensitive species such as P. squarrosa, can provide useful data for national-scale biomonitoring programs, whereas soil acidification and soil C and N storage could be useful as additional corroborating ecosystem indicators of chronic N pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims Agricultural soils in semiarid Mediterranean areas are characterized by low organic matter contents and low fertility levels. Application of crop residues and/or manures as amendments is a cost-effective and sustainable alternative to overcome this problem. However, these management practices may induce important changes in the nitrogen oxide emissions from these agroecosystems, with additional impacts on carbon dioxide emissions. In this context, a field experiment was carried out with a barley (Hordeum vulgare L.) crop under Mediterranean conditions to evaluate the effect of combining maize (Zea mays L.) residues and N fertilizer inputs (organic and/or mineral) on these emissions. Methods Crop yield and N uptake, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification capacity, N2O, NO and CO2 fluxes were measured during the growing season. Results The incorporation of maize stover increased N2O emissions during the experimental period by c. 105 %. Conversely, NO emissions were significantly reduced in the plots amended with crop residues. The partial substitution of urea by pig slurry reduced net N2O emissions by 46 and 39 %, with and without the incorporation of crop residues respectively. Net emissions of NO were reduced 38 and 17 % for the same treatments. Molar DOC:NO 3 − ratio was found to be a robust predictor of N2O and NO fluxes. Conclusions The main effect of the interaction between crop residue and N fertilizer application occurred in the medium term (4–6 month after application), enhancing N2O emissions and decreasing NO emissions as consequence of residue incorporation. The substitution of urea by pig slurry can be considered a good management strategy since N2O and NO emissions were reduced by the use of the organic residue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0–10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content. Independent of the soil management, after six months, no significant differences in microaggregates were found regarding to the control plots. These results showed an increase in the stability of the macroaggregates when soil is amended with sludge, pinus mulch and straw much. This fact has been due to an increase in the number cementing agents due to: (i) the application of pinus, straw and sludge had resulted in the release of carbohydrates to the soil; and thus (ii) it has favored the development of a protective vegetation cover, which has increased the number of roots in the soil and the organic contribution to it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation plays a fundamental role in soil conservation, so it is common to consider an increase in vegetation cover as one of the techniques to mitigate the effects of desertification in Mediterranean forest environments. There are two factors limiting the establishment and growth of seedlings in dry environments: (i) an excessive radiation and, (ii) the limited availability of water during the summer drought. During an afforestation plan, soil preparation is always necessary to reduce sapling mortality. The goal of this study was to analyze the effect of various organic amendments on soil according to chemical and hydrological properties, and to assess the effects of these parameters on an afforestal proposal under Mediterranean climate conditions. Five amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); sheep manure (SH) and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha -1 . Under bare soil conditions (C), most of mortalities occurred during the summer period of the first year. A substantial positive effect of SM, PM and HP on the survival rates have been clearly observed. Conversely, when the soil was amended with SH, the survival rate quickly decreased or remained more or less constant regarding to C. In this study, the lack of differences on chemical properties indicates that there may exist other reasons to justify the differences that were found in the pattern of vegetation. However, regarding to the hydrological properties some differences have been found. In C, soils were registered below the wilting point during 4 months a year, and therefore, in the area of water unusable by plants. These months were coinciding with the summer Mediterranean drought and can justify the high mortality found on plants. Conversely, in SM, PM and HP, soil moisture remained below the wilting point less period than C and, the plant available water was also higher. In these treatments, the survival sapling rates measured were the highest. SH showed water holding capacity slightly more limited than C. For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the PM, SM and HP have been proved as a significant method to reduce sapling mortality rates during the Mediterranean summer drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: In the majority of exercise intervention studies, the aggregate reported weight loss is often small. The efficacy of exercise as a weight loss tool remains in question. The aim of the present study was to investigate the variability in appetite and body weight when participants engaged in a supervised and monitored exercise programme. ---------- Design: Fifty-eight obese men and women (BMI = 31·8 ± 4·5 kg/m2) were prescribed exercise to expend approximately 2092 kJ (500 kcal) per session, five times a week at an intensity of 70 % maximum heart rate for 12 weeks under supervised conditions in the research unit. Body weight and composition, total daily energy intake and various health markers were measured at weeks 0, 4, 8 and 12. ---------- Results: Mean reduction in body weight (3·2 ± 1·98 kg) was significant (P < 0·001); however, there was large individual variability (−14·7 to +2·7 kg). This large variability could be largely attributed to the differences in energy intake over the 12-week intervention. Those participants who failed to lose meaningful weight increased their food intake and reduced intake of fruits and vegetables. ---------- Conclusion: These data have demonstrated that even when exercise energy expenditure is high, a healthy diet is still required for weight loss to occur in many people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil respiration in semiarid ecosystems responds positively to temperature, but temperature is just one of many factors controlling soil respiration. Soil moisture can have an overriding influence, particularly during the dry/warm portions of the year. The purpose of this project was to evaluate the influence of soil moisture on the relationship between temperature and soil respiration. Soil samples collected from a range of sites arrayed across a climatic gradient were incubated under varying temperature and moisture conditions. Additionally, we evaluated the impact of substrate quality on short-term soil respiration responses by carrying out substrate-induced respiration assessments for each soil at nine different temperatures. Within all soil moisture regimes, respiration rates always increased with increase in temperature. For a given temperature, soil respiration increased by half (on average) across moisture regimes; Q(10) values declined with soil moisture from 3.2 (at -0.03 MPa) to 2.1 (-1.5 MPa). In summary, soil respiration was generally directly related to temperature, but responses were ameliorated with decrease in soil moisture. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research suggests that soil organic C pools may be a feature of semiarid regions that are particularly sensitive to climatic changes. We instituted an 18-mo experiment along an elevation gradient in northern Arizona to evaluate the influence of temperature, moisture, and soil C pool size on soil respiration. Soils, from underneath different free canopy types and interspaces of three semiarid ecosystems, were moved upslope and/or downslope to modify soil climate. Soils moved downslope experienced increased temperature and decreased precipitation, resulting in decreased soil moisture and soil respiration las much as 23 acid 20%, respectively). Soils moved upslope to more mesic, cooler sites had greater soil water content and increased rates of soil respiration las much as 40%), despite decreased temperature. Soil respiration rates normalized for total C were not significantly different within any of the three incubation sites, indicating that under identical climatic conditions, soil respiration is directly related to soil C pool size for the incubated soils. Normalized soil respiration rates between sites differed significantly for all soil types and were always greater for soils incubated under more mesic, but cooler, conditions. Total soil C did not change significantly during the experiment, but estimates suggest that significant portions of the rapidly cycling C pool were lost. While long-term decreases in aboveground and belowground detrital inputs may ultimately be greater than decreased soil respiration, the initial response to increased temperature and decreased precipitation in these systems is a decrease in annual soil C efflux.