990 resultados para Medicinal chemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics. ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromones are a group of naturally occurring compounds that are ubiquitous in nature, especially in plants. The word chromone is derived from the Greek word chroma, meaning “color”, which point out that many chromone derivatives can exhibit a diversity of colors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química, especialidade Química Orgânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the proposal to search for universal cooperation in the field of Medicinal Chemistry, the IUPAC group has elaborated a line of work divided into two phases: a- An Awareness of the true situation of Medicinal Chemistry in the different geographic areas of the world; b- A proposal of actions as to achieve more effective cooperation. This first report presents and discusses the actual situation in South and Central America as well as in sub-Saharan Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document here has been elaborated by the IUPAC Medicinal Chemistry section and is backed by a large number of scientists, many of whom have had direct involvement and whose names appear at the end of the article. This work discusses the role that the discovery of new medicinal agents has in the development of societies as well as in the conservation of biodiversity in terms of the work carried out on natural products. Also included are several recommendations for countries which are presently in search of their own scientific and technological development in medicinal agents. The IUPAC Medicinal Chemistry section would appreciate the collaboration of the scientific societies in every country to aid in the diffusion of this document.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipases A(2) (PLA(2)s) are commonly found in snake venoms from Viperidae, Hydrophidae and Elaphidae families and have been extensively studied due to their pharmacological and physiopathological effects in living organisms. This article reports a review on natural and artificial inhibitors of enzymatic, toxic and pharmacological effects induced by snake venom PLA(2)s. These inhibitors act on PLA(2)S through different mechanisms, most of them still not completely understood, including binding to specific domains, denaturation, modification of specific amino acid residues and others. Several substances have been evaluated regarding their effects against snake venoms and isolated toxins, including plant extracts and compounds from marine animals, mammals and snakes serum plasma, in addition to poly or monoclonal antibodies and several synthetic molecules. Research involving these inhibitors may be useful to understand the mechanism of action of PLA(2)s and their role in envenomations caused by snake bite. Furthermore, the biotechnological potential of PLA(2) inhibitors may provide therapeutic molecular models with antiophidian activity to supplement the conventional serum therapy against these multifunctional enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis I described the theory and application of several computational methods in solving medicinal chemistry and biophysical tasks. I pointed out to the valuable information which could be achieved by means of computer simulations and to the possibility to predict the outcome of traditional experiments. Nowadays, computer represents an invaluable tool for chemists. In particular, the main topics of my research consisted in the development of an automated docking protocol for the voltage-gated hERG potassium channel blockers, and the investigation of the catalytic mechanism of the human peptidyl-prolyl cis-trans isomerase Pin1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that ageing and cancer have common origins due to internal and environmental stress and share some common hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury. Moreover, ageing is involved in a number of events responsible for carcinogenesis and cancer development at the molecular, cellular, and tissue levels. Ageing could represent a “blockbuster” market because the target patient group includes potentially every person; at the same time, oncology has become the largest therapeutic area in the pharmaceutical industry in terms of the number of projects, clinical trials and research and development (R&D) spending, but cancer remains one of the leading causes of mortality worldwide. The overall aim of the work presented in this thesis was the rational design of new compounds able to modulate activity of relevant targets involved in cancer and aging-related pathologies, namely proteasome and immunoproteasome, sirtuins and interleukin 6. These three targets play different roles in human cells, but the modulation of its activity using small molecules could have beneficial effects on one or more aging-related diseases and cancer. We identified new moderately active and selective non-peptidic compounds able to inhibit the activity of both standard and immunoproteasome, as well as novel and selective scaffolds that would bind and inhibit SIRT6 selectively and can be used to sensitize tumor cells to commonly used anticancer agents such gemcitabine and olaparib. Moreover, our virtual screening approach led us also to the discovery of new putative modulators of SIRT3 with interesting in-vitro and cellular activity. Although the selectivity and potency of the identified chemical scaffolds are susceptible to be further improved, these compounds can be considered as highly promising leads for the development of future therapeutics.