873 resultados para Medical care Quality control Statistical methods
Resumo:
Mode of access: Internet.
Resumo:
Men, particularly minorities, have higher rates of diabetes as compared with their counterparts. Ongoing diabetes self-management education and support by specialists are essential components to prevent the risk of complications such as kidney disease, cardiovascular diseases, and neurological impairments. Diabetes self-management behaviors, in particular, as diet and physical activity, have been associated with glycemic control in the literature. Recommended medical care for diabetes may differ by race/ethnicity. This study examined data from the National Health and Nutrition Examination Surveys, 2007 to 2010 for men with diabetes (N = 646) from four racial/ethnic groups: Mexican Americans, other Hispanics, non-Hispanic Blacks, and non-Hispanic Whites. Men with adequate dietary fiber intake had higher odds of glycemic control (odds ratio = 4.31, confidence interval [1.82, 10.20]), independent of race/ethnicity. There were racial/ethnic differences in reporting seeing a diabetes specialist. Non-Hispanic Blacks had the highest odds of reporting ever seeing a diabetes specialist (84.9%) followed by White non-Hispanics (74.7%), whereas Hispanics reported the lowest proportions (55.2% Mexican Americans and 62.1% other Hispanics). Men seeing a diabetes specialist had the lowest odds of glycemic control (odds ratio = 0.54, confidence interval [0.30, 0.96]). The results of this study suggest that diabetes education counseling may be selectively given to patients who are not in glycemic control. These findings indicate the need for examining referral systems and quality of diabetes care. Future studies should assess the effectiveness of patient-centered medical care provided by a diabetes specialist with consideration of sociodemographics, in particular, race/ethnicity and gender.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
The real-time quality control (RTQC) methods applied to Argo profiling float data by the United Kingdom (UK) Met Office, the United States (US) Fleet Numerical Meteorology and Oceanography Centre, the Australian Bureau of Meteorology and the Coriolis Centre are compared and contrasted. Data are taken from the period 2007 to 2011 inclusive and RTQC performance is assessed with respect to Argo delayed-mode quality control (DMQC). An intercomparison of RTQC techniques is performed using a common data set of profiles from 2010 and 2011. The RTQC systems are found to have similar power in identifying faulty Argo profiles but to vary widely in the number of good profiles incorrectly rejected. The efficacy of individual QC tests are inferred from the results of the intercomparison. Techniques to increase QC performance are discussed.
Resumo:
Introduction: Emergency prehospital medical care providers are frontline health workers during emergencies. However, little is known about their attitudes, perceptions, and likely behaviors during emergency conditions. Understanding these attitudes and behaviors is crucial to mitigating the psychological and operational effects of biohazard events such as pandemic influenza, and will support the business continuity of essential prehospital services. ----- ----- Problem: This study was designed to investigate the association between knowledge and attitudes regarding avian influenza on likely behavioral responses of Australian emergency prehospital medical care providers in pandemic conditions. ----- ----- Methods: Using a reply-paid postal questionnaire, the knowledge and attitudes of a national, stratified, random sample of the Australian emergency prehospital medical care workforce in relation to pandemic influenza were investigated. In addition to knowledge and attitudes, there were five measures of anticipated behavior during pandemic conditions: (1) preparedness to wear personal protective equipment (PPE); (2) preparedness to change role; (3) willingness to work; and likely refusal to work with colleagues who were exposed to (4) known and (5) suspected influenza. Multiple logistic regression models were constructed to determine the independent predictors of each of the anticipated behaviors, while controlling for other relevant variables. ----- ----- Results: Almost half (43%) of the 725 emergency prehospital medical care personnel who responded to the survey indicated that they would be unwilling to work during pandemic conditions; one-quarter indicated that they would not be prepared to work in PPE; and one-third would refuse to work with a colleague exposed to a known case of pandemic human influenza. Willingness to work during a pandemic (OR = 1.41; 95% CI = 1.0–1.9), and willingness to change roles (OR = 1.44; 95% CI = 1.04–2.0) significantly increased with adequate knowledge about infectious agents generally. Generally, refusal to work with exposed (OR = 0.48; 95% CI = 0.3–0.7) or potentially exposed (OR = 0.43; 95% CI = 0.3–0.6) colleagues significantly decreased with adequate knowledge about infectious agents. Confidence in the employer’s capacity to respond appropriately to a pandemic significantly increased employee willingness to work (OR = 2.83; 95% CI = 1.9–4.1); willingness to change roles during a pandemic (OR = 1.52; 95% CI = 1.1–2.1); preparedness to wear PPE (OR = 1.68; 95% CI = 1.1–2.5); and significantly decreased the likelihood of refusing to work with colleagues exposed to (suspected) influenza (OR = 0.59; 95% CI = 0.4–0.9). ----- ----- Conclusions:These findings indicate that education and training alone will not adequately prepare the emergency prehospital medical workforce for a pandemic. It is crucial to address the concerns of ambulance personnel and the perceived concerns of their relationship with partners in order to maintain an effective prehospital emergency medical care service during pandemic conditions.
Resumo:
Introduction: Little is known about the risk perceptions and attitudes of healthcare personnel, especially of emergency prehospital medical care personnel, regarding the possibility of an outbreak or epidemic event. Problem: This study was designed to investigate pre-event knowledge and attitudes of a national sample of the emergency prehospital medical care providers in relation to a potential human influenza pandemic, and to determine predictors of these attitudes. Methods: Surveys were distributed to a random, cross-sectional sample of 20% of the Australian emergency prehospital medical care workforce (n = 2,929), stratified by the nine services operating in Australia, as well as by gender and location. The surveys included: (1) demographic information; (2) knowledge of influenza; and (3) attitudes and perceptions related to working during influenza pandemic conditions. Multiple logistic regression models were constructed to identify predictors of pandemic-related risk perceptions. Results: Among the 725 Australian emergency prehospital medical care personnel who responded, 89% were very anxious about working during pandemic conditions, and 85% perceived a high personal risk associated with working in such conditions. In general, respondents demonstrated poor knowledge in relation to avian influenza, influenza generally, and infection transmission methods. Less than 5% of respondents perceived that they had adequate education/training about avian influenza. Logistic regression analyses indicate that, in managing the attitudes and risk perceptions of emergency prehospital medical care staff, particular attention should be directed toward the paid, male workforce (as opposed to volunteers), and on personnel whose relationship partners do not work in the health industry. Conclusions: These results highlight the potentially crucial role of education and training in pandemic preparedness. Organizations that provide emergency prehospital medical care must address this apparent lack of knowledge regarding infection transmission, and procedures for protection and decontamination. Careful management of the perceptions of emergency prehospital medical care personnel during a pandemic is likely to be critical in achieving an effective response to a widespread outbreak of infectious disease.
Resumo:
One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.
Resumo:
The impact of erroneous genotypes having passed standard quality control (QC) can be severe in genome-wide association studies, genotype imputation, and estimation of heritability and prediction of genetic risk based on single nucleotide polymorphisms (SNP). To detect such genotyping errors, a simple two-locus QC method, based on the difference in test statistic of association between single SNPs and pairs of SNPs, was developed and applied. The proposed approach could detect many problematic SNPs with statistical significance even when standard single SNP QC analyses fail to detect them in real data. Depending on the data set used, the number of erroneous SNPs that were not filtered out by standard single SNP QC but detected by the proposed approach varied from a few hundred to thousands. Using simulated data, it was shown that the proposed method was powerful and performed better than other tested existing methods. The power of the proposed approach to detect erroneous genotypes was approximately 80% for a 3% error rate per SNP. This novel QC approach is easy to implement and computationally efficient, and can lead to a better quality of genotypes for subsequent genotype-phenotype investigations.
Resumo:
"We thank MrGilder for his considered comments and suggestions for alternative analyses of our data. We also appreciate Mr Gilder’s support of our call for larger studies to contribute to the evidence base for preoperative loading with high-carbohydrate fluids..."
Resumo:
Apart from the use of statistical quality control chart for variables or attributes of food products in a food processing industry, the application of these charts for attributes of fishery products is explained. Statistical quality control chart for fraction defectives is explained by noting defective fish sausages per shift from a sausage industry while control chart for number of defectives is illustrated for number of defective fish cans in each hour of its production of a canning industry. C-chart is another type of control chart which is explained here for number of defects per single fish fillet sampled a1l random for every five minutes in a processing industry. These statistical quality control charts help in the more economic use of resource, time and labour than control charts for variables of products. Also control charts for attributes exhibit the quality history of finished products at different times of production thereby minimizing the risk of consumer rejection.
Resumo:
The quality of raw and processed fishery products depend on several factors like physiological conditions at the time of capture, morphological differences, rigor mortis, species, rate of icing and subsequent storage conditions. Sensory evaluation is still the most reliable method for evaluation of the freshness of raw processed fishery products. Sophisticated methods like Intelectron fish tester, cell fragility technique and chemical and bacteriological methods like estimation of trimethylamine, hypoxanthine, carbonyl compounds, volatile acid and total bacterial count have no doubt been developed for accessing the spoilage in fish products.