952 resultados para Medical bacteriology
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 257-258.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references and index.
Resumo:
Includes bibliographies and index.
Resumo:
Mycobacterium asiaticum was first reported as a cause of human disease in 1982, with only a few cases in the literature to date. This study aims to review the clinical significance of M. asiaticum isolates in Queensland, Australia. A retrospective review (1989 to 2008) of patients with M. asiaticum isolates was conducted. Data were collected through the Queensland TB Control Centre database. Disease was defined in accordance with the American Thoracic Society criteria. Twenty-four patients (13 female) had a positive culture of M. asiaticum, many residing around the Tropic of Capricorn. M. asiaticum was responsible for pulmonary disease (n = 2), childhood lymphadenitis (n = 1), olecranon bursitis (n = 1), 6 cases of possible pulmonary disease, and 2 possible wound infections. Chronic lung disease was a risk factor for pulmonary infection, and wounds/lacerations were a risk factor for extrapulmonary disease. Extrapulmonary disease responded to local measures. Pulmonary disease responded to ethambutol-isoniazid-rifampin plus pyrazinamide for the first 2 months in one patient, and amikacin-azithromycin-minocycline in another patient. While M. asiaticum is rare in Queensland, there appears to be an environmental niche. Although often a colonizer, it can be a cause of pulmonary and extrapulmonary disease. Treatment of pulmonary disease remains challenging. Extrapulmonary disease does not mandate specific nontuberculous mycobacterium (NTM) treatment.
Resumo:
Zoonotic infections are a growing threat to global health. Chlamydia pneumoniae is a major human pathogen that is widespread in human populations, causing acute respiratory disease, and has been associated with chronic disease. C. pneumoniae was first identified solely in human populations; however, its host range now includes other mammals, marsupials, amphibians, and reptiles. Australian koalas (Phascolarctos cinereus) are widely infected with two species of Chlamydia, C. pecorum and C. pneumoniae. Transmission of C. pneumoniae between animals and humans has not been reported; however, two other chlamydial species, C. psittaci and C. abortus, are known zoonotic pathogens. We have sequenced the 1,241,024-bp chromosome and a 7.5-kb cryptic chlamydial plasmid of the koala strain of C. pneumoniae (LPCoLN) using the whole-genome shotgun method. Comparative genomic analysis, including pseudogene and single-nucleotide polymorphism (SNP) distribution, and phylogenetic analysis of conserved genes and SNPs against the human isolates of C. pneumoniae show that the LPCoLN isolate is basal to human isolates. Thus, we propose based on compelling genomic and phylogenetic evidence that humans were originally infected zoonotically by an animal isolate(s) of C. pneumoniae which adapted to humans primarily through the processes of gene decay and plasmid loss, to the point where the animal reservoir is no longer required for transmission.
Resumo:
A crucial process of chlamydial development involves differentiation of the replicative reticulate body (RB) into the infectious elementary body (EB). We present experimental evidence to provide support for a contact-dependent hypothesis for explaining the trigger involved in differentiation. We recorded live-imaging of Chlamydia trachomatis-infected McCoy cells at key times during development and tracked the temporospatial trajectories of individual chlamydial particles. We found that movement of the particles is related to development. Early to mid-developmental stages involved slight wobbling of RBs. The average speed of particles increased sharply at 24 h postinfection (after the estimated onset of RB to EB differentiation). We also investigated a penicillin-supplemented culture containing EBs, RBs, and aberrantly enlarged, stressed chlamydiae. Near-immobile enlarged particles are consistent with their continued tethering to the chlamydial inclusion membrane (CIM). We found a significantly negative, nonlinear association between speed and size/type of particles, providing further support for the hypothesis that particles become untethered near the onset of RB to EB differentiation. This study establishes the relationship between the motion properties of the chlamydiae and developmental stages, whereby wobbling RBs gradually lose contact with the CIM, and RB detachment from the CIM is coincidental with the onset of late differentiation.
Resumo:
Mycobacterium lentiflavum, a slow-growing nontuberculous mycobacterium, is a rare cause of human disease. It has been isolated from environmental samples worldwide. To assess the clinical significance of M. lentiflavum isolates reported to the Queensland Tuberculosis Control Centre, Australia, during 2001-2008, we explored the genotypic similarity and geographic relationship between isolates from humans and potable water in the Brisbane metropolitan area. A total of 47 isolates from 36 patients were reported; 4 patients had clinically significant disease. M. lentiflavum was cultured from 13 of 206 drinking water sites. These sites overlapped geographically with home addresses of the patients who had clinically significant disease. Automated repetitive sequence-based PCR genotyping showed a dominant environmental clone closely related to clinical strains. This finding suggests potable water as a possible source of M. lentiflavum infection in humans.
Resumo:
M. fortuitum is a rapidly growing mycobacterium associated with community-acquired and nosocomial wound, soft tissue, and pulmonary infections. It has been postulated that water has been the source of infection especially in the hospital setting. The aim of this study was to determine if municipal water may be the source of community-acquired or nosocomial infections in the Brisbane area. Between 2007 and 2009, 20 strains of M. fortuitum were recovered from municipal water and 53 patients’ isolates were submitted to the reference laboratory. A wide variation in strain types was identified using repetitive element sequence-based PCR, with 13 clusters of ≥2 indistinguishable isolates, and 28 patterns consisting of individual isolates. The clusters could be grouped into seven similar groups (>95% similarity). Municipal water and clinical isolates collected during the same time period and from the same geographical area consisted of different strain types, making municipal water an unlikely source of sporadic human infection.
Resumo:
Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.
Resumo:
Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease.