926 resultados para Median graph


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of a graphG is the set of vertices x that minimize (maximize) the remoteness i d(x,ui ). Two algorithms for median graphs G of complexity O(nidim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A profile on a graph G is any nonempty multiset whose elements are vertices from G. The corresponding remoteness function associates to each vertex x 2 V.G/ the sum of distances from x to the vertices in the profile. Starting from some nice and useful properties of the remoteness function in hypercubes, the remoteness function is studied in arbitrary median graphs with respect to their isometric embeddings in hypercubes. In particular, a relation between the vertices in a median graph G whose remoteness function is maximum (antimedian set of G) with the antimedian set of the host hypercube is found. While for odd profiles the antimedian set is an independent set that lies in the strict boundary of a median graph, there exist median graphs in which special even profiles yield a constant remoteness function. We characterize such median graphs in two ways: as the graphs whose periphery transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we present an algorithm that, given a graph G on n vertices and m edges, decides in O.mlog n/ time whether G is a median graph with geodetic number 2

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Almost self-centered graphs were recently introduced as the graphs with exactly two non-central vertices. In this paper we characterize almost selfcentered graphs among median graphs and among chordal graphs. In the first case P4 and the graphs obtained from hypercubes by attaching to them a single leaf are the only such graphs. Among chordal graph the variety of almost self-centered graph is much richer, despite the fact that their diameter is at most 3. We also discuss almost self-centered graphs among partial cubes and among k-chordal graphs, classes of graphs that generalize median and chordal graphs, respectively. Characterizations of almost self-centered graphs among these two classes seem elusive

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The median of a profile = (u1, . . . , uk ) of vertices of a graph G is the set of vertices x that minimize the sum of distances from x to the vertices of . It is shown that for profiles with diameter the median set can be computed within an isometric subgraph of G that contains a vertex x of and the r -ball around x, where r > 2 − 1 − 2 /| |. The median index of a graph and r -joins of graphs are introduced and it is shown that r -joins preserve the property of having a large median index. Consensus strategies are also briefly discussed on a graph with bounded profiles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A periphery transversal of a median graph G is introduced as a set of vertices that meets all the peripheral subgraphs of G. Using this concept, median graphs with geodetic number 2 are characterized in two ways. They are precisely the median graphs that contain a periphery transversal of order 2 as well as the median graphs for which there exists a profile such that the remoteness function is constant on G. Moreover, an algorithm is presented that decides in O(mlog n) time whether a given graph G with n vertices and m edges is a median graph with geodetic number 2. Several additional structural properties of the remoteness function on hypercubes and median graphs are obtained and some problems listed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present paper, we introduce a notion of a style representing abstract, complex objects having characteristics that can be represented as structured objects. Furthermore, we provide some mathematical properties of such styles. As a main result, we present a novel approach to perform a meaningful comparative analysis of such styles by defining and using graph-theoretic measures. We compare two styles by comparing the underlying feature sets representing sets of graph structurally. To determine the structural similarity between the underlying graphs, we use graph similarity measures that are computationally efficient. More precisely, in order to compare styles, we map each feature set to a so-called median graph and compare the resulting median graphs. As an application, we perform an experimental study to compare special styles representing sets of undirected graphs and present numerical results thereof. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Majority Strategy for finding medians of a set of clients on a graph can be relaxed in the following way: if we are at v, then we move to a neighbor w if there are at least as many clients closer to w than to v (thus ignoring the clients at equal distance from v and w). The graphs on which this Plurality Strategy always finds the set of all medians are precisely those for which the set of medians induces always a connected subgraph

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A profile is a finite sequence of vertices of a graph. The set of all vertices of the graph which minimises the sum of the distances to the vertices of the profile is the median of the profile. Any subset of the vertex set such that it is the median of some profile is called a median set. The number of median sets of a graph is defined to be the median number of the graph. In this paper, we identify the median sets of various classes of graphs such as Kp − e, Kp,q forP > 2, and wheel graph and so forth. The median numbers of these graphs and hypercubes are found out, and an upper bound for the median number of even cycles is established.We also express the median number of a product graph in terms of the median number of their factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distance DG(v) of a vertex v in an undirected graph G is the sum of the distances between v and all other vertices of G. The set of vertices in G with maximum (minimum) distance is the antimedian (median) set of a graph G. It is proved that for arbitrary graphs G and J and a positive integer r 2, there exists a connected graph H such that G is the antimedian and J the median subgraphs of H, respectively, and that dH(G, J) = r. When both G and J are connected, G and J can in addition be made convex subgraphs of H.