7 resultados para Mechanoreceptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meissner corpuscles and Merkel cell neurite complexes are highly specialized mechanoreceptors present in the hairy and glabrous skin, as well as in different types of mucosa. Several reports suggest that after injury, such as after nerve crush, freeze injury, or dissection of the nerve, they are able to regenerate, particularly including reinnervation and repopulation of the mechanoreceptors by Schwann cells. However, little is known about mammalian cells responsible for these regenerative processes. Here we review cellular origin of this plasticity in the light of newly described adult neural crest-derived stem cell populations. We also discuss further potential multipotent stem cell populations with the ability to regenerate disrupted innervation and to functionally recover the mechanoreceptors. These capabilities are discussed as in context to cellularly reprogrammed Schwann cells and tissue resident adult mesenchymal stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elasmobranchs have hundreds of tiny sensory organs, called pit organs, scattered over the skin surface. The pit organs were noted in many early studies of the lateral line, but their exact nature has long remained a mystery. Although pit organs were known to be innervated by the lateral line nerves, and light micrographs suggested that they were free neuromasts, speculation that they may be external taste buds or chemoreceptors has persisted until recently Electron micrographs have now revealed that the pit organs are indeed free neuromasts. Their functional and behavioural role(s), however, are yet to be investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined changes in the array of antennal sensilla of three species of Triatominae (Triatoma infestans, Rhodnius prolixus, and R. pallescens) following their establishment for different periods in laboratory culture. In each case, the laboratory colonies were compared with conspecific samples taken directly from the field, by quantitative analysis of the sensilla arrays on the three distal segments of the antenna in terms of the densities of three types of chemoreceptors (basiconics and thick and thin walled trichoids) and one type of mechanoreceptor (bristles). Sensilla densities were compared by ANOVA or non-parametric tests, and by multivariate discriminant analysis. Strains of the same species reared in different laboratories showed significant differences in their sensilla arrays, especially when compared to field-collected material from the same geographic origin. A Bolivian strain of T. infestans reared in the laboratory for 15 years and fed at monthly intervals, showed greatest differences from its conspecific wild forms, especially in terms of reductions in the number of chemoreceptors. By contrast, an Argentine strain of T. infestans reared for 25 years in the laboratory and fed weekly, showed a relative increase in the density of mechanoreceptors. A Colombian strain of R. prolixus reared for 20 years and fed weekly or fortnightly, showed only modest differences in the sensilla array when compared to its wild populations from the same area. However, a Colombian strain of R. pallescens reared for 12 years and fed fortnightly, did show highly significant reductions in one form of chemoreceptor compared to its conspecific wild populations. For all populations, multivariate analysis clearly discriminated between laboratory and field collected specimens, suggesting that artificial rearing can lead to modifications in the sensory array. This not only supports the idea of morphological plasticity in these species, but also suggests caution in the use of long-established laboratory material for experimental studies designed to extrapolate the natural behaviour and physiology of these species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main generator source of a longitudinal muscle contraction was identified as an M (mechanical-stimulus-sensitive) circuit composed of a presynaptic M-1 neuron and a postsynaptic M-2 neuron in the ventral nerve cord of the earthworm, Amynthas hawayanus, by simultaneous intracellular response recording and Lucifer Yellow-CH injection with two microelectrodes. Five-peaked responses were evoked in both neurons by a mechanical, but not by an electrical, stimulus to the mechanoreceptor in the shaft of a seta at the opposite side of an epidermis-muscle-nerve-cord preparation. This response was correlated to 84% of the amplitude, 73% of the rising rate and 81% of the duration of a longitudinal muscle contraction recorded by a mechano-electrical transducer after eliminating the other possible generator sources by partitioning the epidermis-muscle piece of this preparation. The pre- and postsynaptic relationship between these two neurons was determined by alternately stimulating and recording with two microelectrodes. Images of the Lucifer Yellow-CH-filled M-1 and M-2 neurons showed that both of them are composed of bundles of longitudinal processes situated on the side of the nerve cord opposite to stimulation. The M-1 neuron has an afferent process (A1) in the first nerve at the stimulated side of this preparation and the M-2 neuron has two efferent processes (E1 and E3) in the first and third nerves at the recording side where their effector muscle cell was identified by a third microelectrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of mechanisms have been proposed to explain the pleiotropic effect of statin therapy to reduce sympathetic outflow in cardiovascular disease. We tested the hypothesis that statin treatment could improve baroreflex gain-sensitivity triggered by morphological adaptations in the mechanoreceptor site, thus reducing sympathetic activity, regardless of arterial pressure (AP) level reduction. Male spontaneously hypertensive rats (SHR) were divided into control (SHR, n = 8) and SHR-simvastatin (5 mg/kg/day, for 7 days) (SHR-S, n = 8). After treatment, AP, baroreflex sensitivity (BRS) in response to AP-induced changes, aortic depressor nerve activity, and spectral analyses of pulse interval (PI) and AP variabilities were performed. Internal and external carotids were prepared for morphoquantitative evaluation. Although AP was similar between groups, sympathetic modulation, represented by the low frequency band of PI (SHR: 6.84 ± 3.19 vs. SHR-S: 2.41 ± 0.96 msec2) and from systolic AP variability (SHR: 3.95 ± 0.36 vs. SHR-S: 2.86 ± 0.18 mmHg2), were reduced in treated animals. In parallel, simvastatin induced an increase of 26% and 21% in the number of elastic lamellae as well as a decrease of 9% and 25% in the carotid thickness in both, external and internal carotid, respectively. Moreover, improved baroreceptor function (SHR: 0.78 ± 0.03 vs. SHR-S: 1.06 ± 0.04% mv/mmHg) was observed in addition to a 115% increase in aortic depressor nerve activity in SHR-S rats. Therefore, our data suggest that the reduction of sympathetic outflow in hypertension by simvastatin treatment may be triggered by structural changes in the carotid arteries and increased BRS in response to an improvement of the baroreceptors discharge and consequently of the afferent pathway of the baroreflex arch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dizziness and/or unsteadiness are common symptoms of chronic whiplash-associated disorders. This study aimed to report the characteristics of these symptoms and determine whether there was any relationship to cervical joint position error. Joint position error, the accuracy to return to the natural head posture following extension and rotation, was measured in 102 subjects with persistent whiplash-associated disorder and 44 control subjects. Whiplash subjects completed a neck pain index and answered questions about the characteristics of dizziness. The results indicated that subjects with whiplash-associated disorders had significantly greater joint position errors than control subjects. Within the whiplash group, those with dizziness had greater joint position errors than those without dizziness following rotation (rotation (R) 4.5degrees (0.3) vs 2.9degrees (0.4); rotation (L) 3.9degrees (0.3) vs 2.8degrees (0.4) respectively) and a higher neck pain index (55.3% (1.4) vs 43.1% (1.8)). Characteristics of the dizziness were consistent for those reported for a cervical cause but no characteristics could predict the magnitude of joint position error. Cervical mechanoreceptor dysfunction is a likely cause of dizziness in whiplash-associated disorder.