985 resultados para Mechanical stresses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: There is considerable evidence that patients with carotid artery stenosis treated immediately after the ischaemic cerebrovascular event have a better clinical outcome than those who have delayed treatment. Biomechanical assessment of carotid plaques using high-resolution MRI can help examine the relationship between the timing of carotid plaque symptomology and maximum simulated plaque stress concentration. Methods: Fifty patients underwent high-resolution multisequence in vivo MRI of their carotid arteries. Patients with acute symptoms (n=25) underwent MRI within 72 h of the onset of ischaemic cerebrovascular symptoms, whereas recently symptomatic patients (n=25) underwent MRI from 2 to 6 weeks after the onset of symptoms. Stress analysis was performed based on the geometry derived from in vivo MRI of the symptomatic carotid artery at the point of maximum stenosis. The peak stresses within the plaques of the two groups were compared. Results: Patient demographics were comparable for both groups. All the patients in the recently symptomatic group had severe carotid stenosis in contrast to patients with acute symptoms who had predominantly mild to moderate carotid stenosis. The simulated maximum stresses in patients with acute symptoms was significantly higher than in recently symptomatic patients (median (IQR): 313310 4 dynes/cm 2 (295 to 382) vs 2523104 dynes/cm 2 (236 to 311), p=0.02). Conclusions: Patients have extremely unstable, high-risk plaques, with high stresses, immediately after an acute cerebrovascular event, even at lower degrees of carotid stenoses. Biomechanical stress analysis may help us refine our risk-stratification criteria for the management of patients with carotid artery disease in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LDL aggregates when exposed to even moderate fluid mechanical stresses in the laboratory, yet its half-life in the circulation is 2-3 days, implying that little aggregation occurs. LDL may be protected from aggregation in vivo by components of plasma, or by a qualitative difference in flows. Previous studies have shown that HDL and albumin inhibit the aggregation induced by vortexing. Using a more reproducible method of inducing aggregation and assessing aggregation both spectrophotometrically and by sedimentation techniques, we showed that at physiological concentrations, albumin is the more effective inhibitor, and that aggregation is substantially but not completely inhibited in plasma. Heat denatured and fatty-acid-stripped albumin were more effective inhibitors than normal albumin, supporting the idea that hydrophobic interactions are involved. Aggregation of LDL in a model reproducing several aspects of flow in the circulation was 200-fold slower, but was still inhibited by HDL and albumin, suggesting similar mechanisms are involved. Within the sensitivity of our technique, LDL aggregation did not occur in plasma exposed to these flows.jlr Thus, as a result of the characteristics of blood flow and the inhibitory effects of plasma components, particularly albumin, LDL aggregation is unlikely to occur within the circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sealed gas filled flat plate solar collectors will have stresses in the material since volume and pressure varies in the gas when the temperature changes. Several geometries were analyzed and it could be seen that it is possible reducing the stresses and improve the safety factor of the weakest point in the construction by using larger area and/or reducing the distance between glass and absorber and/or change width and height relationship so the tubes are getting longer. Further it could be shown that the safety factor won't always get improved with reinforcements. It is so because when an already strong part of the collector gets reinforced it will expose weaker parts for higher stresses. The finite element method was used for finding out the stresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. Denture bases may become increasingly weaker as a result of thermal stress and flexural cyclic loading. Information regarding this potential problem and its relationship to the denture base reline is limited.Purpose. This study evaluated the influence of thermal and mechanical stresses on the strength of intact and relined denture bases.Material and methods. Twenty-eight microwave-polymerized (Acron MC) intact denture bases were prepared in the shape of a 3-mm-thick maxillary denture. Additionally, fifty-six 2-mm-thick denture bases were relined with 1 mm of autopolymerizing resin (Tokuyama Rebase Fast II or New Truliner) (n = 28). Intact and relined specimens were divided into 4 groups (n = 7) as follows: without stress (control); a mechanical stress at 0.8 Hz for 10,000 cycles; 5000 thermal cycles between 5 degrees C and 55 degrees C; or a combination thermo-mechanical stress. The specimens were vertically loaded in compression with a rounded rod at 5 mm/min until failure, using a universal testing machine. Data on maximum fracture load (N), deflection at fracture (%), and fracture energy (N-mm) were analyzed by 2-way analysis of variance and Student-Newman-Keuls tests (alpha = .05).Results. The strength of the denture bases relined with New Truliner was not significantly affected by any of the experimental conditions, but comparing the control groups, New Truliner exhibited the lowest maximum fracture load values. The maximum fracture load of intact denture bases (P = .002) and those relined with Tokuyama Rebase Fast II (P = .01) showed a significant decrease after thermal stress. Additionally, cyclic loading significantly decreased the maximum fracture load (P < .001), deflection at fracture (P = .025), and fracture energy (P < .001) of intact denture bases and those relined with Tokuyama Rebase (P values of .002, .039, and .001, respectively).Conclusion. Thermal and mechanical stresses exert deleterious effects on the strength of intact and/or relined denture bases, which vary according to the relining material used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The impact of mechanical stresses upon ichthyoplankton entrained in power plant cooling systems has long been considered negligible. Arguments and evidence exist, however, to show that such a supposition is not universally true, especially in nuclear power plants. The mechanisms of mechanical damage can be detailed in terms of pressure change, acceleration, and shear stress with in the fluid flow field. Laboratory efforts to quantify the effects of mechanical stress have been very sparse. A well-planned bioassay is urgently needed. (PDF has 11 pages.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main purpose of this study was to evaluate the effect that mechanical stresses acting under the slipping driving wheels of agricultural equipment have on the soil’s pore system and water flow process (surface runoff generation during extreme event). The field experiment simulated low slip (1%) and high slip (27%) on a clay loam. The stress on the soil surface and changes in the amounts of water flowing from macropores were simulated using the Tires/tracks And Soil Compaction (TASC) tool and the MACRO model, respectively. Taking a 65 kW tractor on a clay loam as a reference, results showed that an increase in slip of the rear wheels from 1% to 27% caused normal stress to increase from 90.6 kPa to 104.4 kPa at the topsoil level, and the maximum shear contact stress to rise drastically from 6.0 kPa to 61.6 kPa. At 27% slip, topsoil was sheared and displaced over a distance of 0.35 m. Excessive normal and shear stress values with high slip caused severe reductions of the soil’s macroporosity, saturated hydraulic conductivity, and water quantities flowing from topsoil macropores. Assuming that, under conditions of intense rainfall on sloping land, a loss in vertical water flow would mean an increase in surface runoff, we calculated that a rainfall intensity of 100 mm h-1 and a rainfall duration of 1 h would increase the runoff coefficient to 0.79 at low slip and to 1.00 at high slip, indicating that 100% of rainwater would be transformed into surface runoff at high slip. We expect that these effects have a significant impact on soil erosion and floods in steeper terrain (slope > 15°) and across larger surface areas (> 16 m2) than those included in our study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vertebrplasty involved injecting cement into a fractured vertebra to provide stabilisation. There is clinical evidence to suggest however that vertebroplasty may be assocated with a higher risk of adjacent vertebral fracture; which may be due to the change in material properties of the post-procedure vertebra modifying the transmission of mechanical stresses to adjacent vertebrae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines the effect of anisotropic growth on the evolution of mechanical stresses in a linear-elastic model of a growing, avascular tumour. This represents an important improvement on previous linear-elastic models of tissue growth since it has been shown recently that spatially-varying isotropic growth of linear-elastic tissues does not afford the necessary stress-relaxation for a steady-state stress distribution upon reaching a nutrient-regulated equilibrium size. Time-dependent numerical solutions are developed using a Lax-Wendroff scheme, which show the evolution of the tissue stress distributions over a period of growth until a steady-state is reached. These results are compared with the steady-state solutions predicted by the model equations, and key parameters influencing these steady-state distributions are identified. Recommendations for further extensions and applications of this model are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a novel approach to the design and fabrication of a high temperature inverter module for hybrid electrical vehicles is presented. Firstly, SiC power electronic devices are considered in place of the conventional Si devices. Use of SiC raises the maximum practical operating junction temperature to well over 200°C, giving much greater thermal headroom between the chips and the coolant. In the first fabrication, a SiC Schottky barrier diode (SBD) replaces the Si pin diode and is paired with a Si-IGBT. Secondly, double-sided cooling is employed, in which the semiconductor chips are sandwiched between two substrate tiles. The tiles provide electrical connections to the top and the bottom of the chips, thus replacing the conventional wire bonded interconnect. Each tile assembly supports two IGBTs and two SBDs in a half-bridge configuration. Both sides of the assembly are cooled directly using a high-performance liquid impingement system. Specific features of the design ensure that thermo-mechanical stresses are controlled so as to achieve long thermal cycling life. A prototype 10 kW inverter module is described incorporating three half-bridge sandwich assemblies, gate drives, dc-link capacitance and two heat-exchangers. This achieves a volumetric power density of 30W/cm3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of oxygen partial pressure on the structure and photoluminescence (PL) of ZnO films were studied. The films were prepared by direct current (DC) reactive magnetron sputtering with various oxygen concentrations at room temperature. With increasing oxygen ratio, the structure of films changes from zinc and zinc oxide phases, single-phase ZnO, to the (002) orientation, and the mechanical stresses exhibit from tensile stress to compressive stress. Films deposited at higher oxygen pressure show weaker emission intensities, which may result from the decrease of the oxygen vacancies and zinc interstitials in the film. This indicates that the emission in ZnO film originates from the oxygen vacancy and zinc interstitial-related defects. From optical transmittance spectra of ZnO films, the plasma edge shifts towards the shorter wavelength with the improvement of film stoichiometry. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a compact integrated power electronic module (IPEM) which seeks to overcome the volumetric power density limitations of conventional packaging technologies. A key innovation has been the development of a substrate sandwich structure which permits double side cooling of the embedded dies whilst controlling the mechanical stresses both within the module and at the heat exchanger interface. A 3-phase inverter module has been developed, integrating the sandwich structures with high efficiency impingement coolers, delink capacitance and gate drive units. Full details of the IPEM construction and electrical evaluation are given in the paper. © 2007 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell monolayers line most of the surfaces and cavities in the human body. During development and normal physiology, monolayers sustain, detect and generate mechanical stresses, yet little is known about their mechanical properties. We describe a cell culture and mechanical testing protocol for generating freely suspended cell monolayers and examining their mechanical and biological response to uniaxial stretch. Cells are cultured on temporary collagen scaffolds polymerized between two parallel glass capillaries. Once cells form a monolayer covering the collagen and the capillaries, the scaffold is removed with collagenase, leaving the monolayer suspended between the test rods. The suspended monolayers are subjected to stretching by prying the capillaries apart with a micromanipulator. The applied force can be measured for the characterization of monolayer mechanics. Monolayers can be imaged with standard optical microscopy to examine changes in cell morphology and subcellular organization concomitant with stretch. The entire preparation and testing protocol requires 3-4 d.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the control and operation of doubly-fed induction generator (DFIG) and fixed-speed induction generator (FSIG) based wind farms under unbalanced grid conditions. A DFIG system model suitable for analyzing unbalanced operation is developed, and used to assess the impact of an unbalanced supply on DFIG and FSIG operation. Unbalanced voltage at DFIG and FSIG terminals can cause unequal heating on the stator windings, extra mechanical stresses and output power fluctuations. These problems are particularly serious for the FSIG-based wind farm without a power electronic interface to the grid. To improve the stability of a wind energy system containing both DFIG and FSIG based wind farms during network unbalance, a control strategy of unbalanced voltage compensation by the DFIG systems is proposed. The DFIG system compensation ability and the impact of transmission network impedance are illustrated. The simulation results implemented in Matlab/Simulink show that the proposed DFIG control system improves not only its own performance, but also the stability of the FSIG system with the same grid connection point during network unbalance.