999 resultados para Mechanical characterizations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One set of composite laminates was manufactured from bi-directional carbon fibre woven cloth pre-impregnated with epoxy resin and used to establish experimental techniques. Another, similar set was used for extensive data collection. One other set of laminates, manufactured from uni-directional carbon fibre, was also subjected to extensive tests to represent a different material. The results give the pre and post characterizations of repaired composite materials; outlining at each stage the losses and gains of structural strength and stiffness and discusses the difficulties experienced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component. © 2013 Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La0.6Sr0.4M0.1Fe0.9O3-δ (M: Co, Ni and Cu) perovskite nanostructures were synthesized using low frequency ultrasound assisted synthesis technique and effect of substitution of Fe by Co, Ni and Cu on crystal structure and mechanical properties in La0.6Sr0.4FeO3-δ perovskite were studied. The HRTEM and Rietveld refinement analyses revealed the uniform equi-axial shape of the obtained nanostructures with the existence of La0.6Sr0.4M0.1Fe0.9O3−δ with mixed rhombohedral and orthorhombic structures. Substitution of Cu decreases the melting point of La0.6Sr0.4FeO3-δ. The results of mechanical characterizations show that La0.6Sr0.4Co0.1Fe0.9O3−δ and La0.6Sr0.4Ni0.1Fe0.9O3−δ have ferroelastic behavior and comparable elastic moduli, however, subtitution of Ni shows higher hardness and lower fracture toughness than Co in Bsite doping

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research on conducting polymers, organic light emitting diodes and organic solar cells has been an exciting field for the past decade. The challenge with these organic devices is the long term stability of the active material. Organic materials are susceptible to chemical degradation in the presence of oxygen and moisture. The sensitivity of these materials towards oxygen and moisture makes it imperative to protect them by encapsulation. Polymer nanocomposites can be used as encapsulation materials in order to prevent material degradation. In the present work, amine functionalized alumina was used as a cross-linking and reinforcing material for the polymer matrix in order to fabricate the composites to be used for encapsulation of devices. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to elucidate the surface chemistry. Thermogravimetric analysis techniques and CHN analysis were used to quantify grafting density of amine groups over the surface of the nanoparticles. Mechanical characterizations of the composites with various loadings were carried out with dynamic mechanical analyzer. It was observed that the composites have good thermal stability and mechanical flexibility, which are important for an encapsulant. The morphology of the composites was evaluated using scanning electron microscopy and atomic force microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIN/CrN multilayer hard coatings with various bilayer thicknesses were fabricated by a reactive sputtering process. The microstructural and mechanical characterizations of multilayer coatings were investigated through transmission electron microscope (TEM) observations and the hardness measurements by nano indentation. In particular, the variation of chemical bonding states of the bilayer nitrides was elucidated by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Many broken nitrogen bonds were formed by decreasing the bilayer thickness of AIN/CrN multilayer coatings. Existence of optimum AIN/CrN multilayer coatings thickness for maximum hardness could be explained by the competition of softening by the formation of broken nitrogen bonds and strengthening induced by decreasing bilayer thickness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface defects are extremely important in mechanical characterization of several different materials. Therefore, the analysis of surface finishing is essential for a further simulation of surface mechanical properties in a customized project in materials science and technology. One of the methods commonly employed for such purpose is the statistical mapping of different sample surface regions using the depth from focus technique. The analysis is usually performed directly from the elevation maps which are obtained from the digital image processing. In this paper, the possibility of quantifying the surface heterogeneity of Silicon Carbide porous ceramics by elevation map histograms is presented. The advantage of this technique is that it allows the qualitative or quantitative verification of all surface image fields that cannot be done by using the Surface Plot plugin of image J™ platform commonly used in digital image processing. © 2012 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo teve como objetivo produzir e avaliar o desempenho de painéis de partículas homogêneas de cimento-bagaço de cana-de-açúcar curados por carbonatação acelerada. Para atingir os resultados foram realizados ensaios de caracterizações morfológica e físico-química das partículas de bagaço de cana-de-açúcar, bem como ensaio de termometria para identificar a compatibilidade da matéria prima (bagaço) com o cimento. Os painéis de partículas cimento-bagaço produzidos foram submetidos a dois processos de cura distintos: 1- cura por 48 h em câmara climática, seguida por 24 h em ambiente com concentração de 15% ±0.6 de CO2, seguida por 24 dias em ambiente saturado ao ar; 2- cura em câmara climática por 48 h, seguida por 25 dias em ambiente saturado ao ar. Ao final dos 28 dias de cura e após ensaio de envelhecimento acelerado de imersão e secagem foram realizadas as caracterizações físico-mecânicas seguindo as recomendações das normativas DIN: 310; 322 e 323, bem como caracterização microestrutural e de condutividade térmica do painel de partículas cimento-bagaço. Os resultados obtidos indicaram que os painéis de partículas cimento-bagaço curados por carbonatação acelerada apresentaram melhor desempenho físico-mecânico quando comparados aos painéis não carbonatados, pois a carbonatação melhorou a interface entre as partículas e a matriz cimentícia, proporcionando maior adesividade entre as fases. E, além disso, reduziu o pH do meio alcalino em que as partículas de bagaço de cana-de-açúcar estão inseridas, minimizando o processo de degradação da lignina, celulose e hemicelulose.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this article is to propose advances for the preparation of hybrid nanocomposites prepared by the combination of intercalation from solution and melt-processing methods. This research investigates the effect of the laponite RDS content on the thermal, structural, and mechanical properties of thermoplastic starch (TPS). X-ray diffraction was performed to investigate the dispersion of the laponite RDS layers into the TPS matrix. The results show good nanodispersion, intercalation, and exfoliation of the clay platelets, indicating that these composites are true nanocomposites. The presence of laponite RDS also improves the thermal stability and mechanical properties of the TPSmatrix due to its reinforcement effect which was optimized by the high degree of exfoliation of the clay. Thus, these results indicate that the exfoliated TPS-laponite nanocomposites have great potential for industrial applications and, more specifically, in the packaging field. © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.