888 resultados para Maximum voluntary ventilation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine differences between hypermobile subjects and controls in terms of maximum strength, rate of force development, and balance. METHODS: We recruited 13 subjects with hypermobility and 18 controls. Rate of force development and maximal voluntary contraction (MVC) during single leg knee extension of the right knee were measured isometrically for each subject. Balance was tested twice on a force plate with 15-second single-leg stands on the right leg. Rate of force development (N/second) and MVC (N) were extracted from the force-time curve as maximal rate of force development (= limit Deltaforce/Deltatime) and the absolute maximal value, respectively. RESULTS: The hypermobile subjects showed a significantly higher value for rate of force development (15.2% higher; P = 0.038, P = 0.453, epsilon = 0.693) and rate of force development related to body weight (16.4% higher; P = 0.018, P = 0.601, epsilon = 0.834) than the controls. The groups did not differ significantly in MVC (P = 0.767, P = 0.136, epsilon = 0.065), and MVC related to body weight varied randomly between the groups (P = 0.921, P = 0.050, epsilon = 0.000). In balance testing, the mediolateral sway of the hypermobile subjects showed significantly higher values (11.6% higher; P = 0.034, P = 0.050, epsilon = 0.000) than that of controls, but there was no significant difference (4.9% difference; P = 0.953, P = 0.050, epsilon = 0.000) in anteroposterior sway between the 2 groups. CONCLUSION: Hypermobile women without acute symptoms or limitations in activities of daily life have a higher rate of force development in the knee extensors and a higher mediolateral sway than controls with normal joint mobility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clinical importance of evaluating the respiratory muscles with a variety of tests has been proposed by several studies, once that the combination of several tests would allow a better diagnosis and therefore, a better clinical follow of disorders of the respiratory muscles. This study aimed to evaluate the feasibility of adapting a national electronic manovacuometer to measure the nasal inspiratory pressure (study 1) and analyze the level of load intensity of maximum voluntary ventilation, as well as the variables that may influence this maneuver in healthy subjects (study 2). We studied 20 healthy subjects by a random evaluation of two measures of SNIP in different equipments: a national and an imported. In study 2 it was analyzed the intensity of the load of MVV test, change in pressure developed during the maneuver, the possible differences between genders, and the correlations between the flow developed in the test and the result of MVV. In study 1 it was found the average for both measures of nasal inspiratory pressures: 125 ± 42.4 cmH2O for the imported equipment and 131.7 ± 28.7 cmH2O for the national one. Pearson analysis showed a significant correlation between the average, with a coefficient r = 0.63. The average values showed no significant differences evaluated by paired t test (p> 0.05). In the Bland-Altman analysis it was found a BIAS = 7 cmH2O, SD 32.9 and a confidence interval of - 57.5 cmH2O up to 71.5 cmH2O. In the second study it was found significant differences between the genders in the air volume moved, being higher in males 150.9 ± 13.1 l / min vs 118.5 ± 15.7 L / min for (p = 0.0002, 95% CI 44.85 to 20:05). Regarding the inspiratory and expiratory loading, they were significantly higher in men than in women, peak inspiratory pressure (34.7 ± 5.3 cmH2O vs 19.5 ± 4.2 cmH2O, 95% CI - 18.0 to -12.3, p <0.0001), peak expiratory (33.8 vs. 23.1 ± 5.9 cmH2O ± 5.4 cmH2O, 95% CI -17.1 to - 4.6, p <0.0001), and the delta pressure (59.7 ± 10 cmH2O vs 36.8 ± 8.3 cmH2O, 95% CI 14.5 to 31.2, p <0.0002). The Pearson correlation showed that the flow generated by the maneuver is strongly correlated with the delta-expiratory pressure / inspiratory (r2= 0.83,R = 0.91, 95%IC 0.72 a 0.97 e p< 0.0001).Through these results we suggest that the national electronic manovacuometer is feasible and safe to perform the sniff test in healthy subjects. For the MVV, there are differences between the genders in the intensity of pressure developed during the maneuver. We found a load intensity considered low during the MVV, and found a strong correlation between the flow generated in the test and the delta pressure expiratory / inspiratory

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Avaliar o efeito da utilização de um programa de treinamento específico dos músculos respiratórios sobre a função pulmonar em indivíduos tabagistas. MÉTODOS: Foram estudados 50 indivíduos tabagistas assintomáticos com idade superior a 30 anos, nos seguintes momentos: A0 - avaliação inicial seguida do protocolo de exercícios respiratórios; A1 - reavaliação após 10 minutos da aplicação do protocolo; e A2 -reavaliação final após duas semanas de treinamento utilizando o mesmo protocolo três vezes por semana. A avaliação foi realizada através das medidas de pressões respiratórias máximas (PImax. e PEmax.), picos de fluxo respiratórios (PFI e PFE), ventilação voluntária máxima (VVM), capacidade vital Forçada (CVF) e Volume expiratório forçado no primeiro segundo (VEF1). RESULTADOS: Não houve melhora na CVF e VEF1 da avaliação inicial para a final. Houve aumento significativo das variáveis PFI, PFE, VVM e PImax nas avaliações A1 e A2. A variável PEmax. aumentou somente na avaliação A2. CONCLUSÃO: A aplicação de protocolo de exercícios respiratórios com e sem carga adicional em indivíduos tabagistas produziu melhora imediata na performance dos músculos respiratórios, mas esta melhora foi mais acentuada após duas semanas de exercício.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Obesity shows changes in pulmonary function and respiratory mechanics, however, little is known regarding the prevalence of worsening respiratory function when considering the increase in central or peripheral adiposity or general obesity. Objectives: To analyze the association between anthropometric adiposity and decreased lung function in obese. Materials and Methods: Patients eligible for this study obese individuals (IMC≥30kg/m2) in pre-bariatric surgery and referred for Treatment Clinic of Obesity and Related Diseases, located at the University Hospital Onofre Lopes (HUOL), from October 2005 and July 2014. The evaluation included clinical information and measurement of anthropometric measures (body mass index (BMI), body fat index (BFI) and waist circumference (WC) and neck (NC)) and spirometric. The prevalence and analysis by Poisson regression was performed considering the following outcome variables: forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and Maximum Voluntary Ventilation (MVV) and as predictor variables were considered: BMI, IAC, WC and NC and as control variables: age, gender, smoking history and comorbidities (diabetes mellitus, dyslipidemia and hypertension). Statistical analysis was performed using Statistical Package for Social Sciences software (SPSS - version 20.0). Results: We analyzed 384 individuals, 75% women, mean BMI: 46.6 (± 8.7) kg/m2, IAC: 49.26 (± 9.48)%, WC: 130.84 (± 16.23) cm and NC: 42.3 (± 4.6) cm. The higher prevalence of FVC and FEV1 <80% was observed in individuals with NC above 42 cm, followed those with a BMI above 45 kg/m2. Multivariate analysis using Poisson regression showed as risk factors associated with FVC <80%, the variables: NC above 42 cm (odds ratio (OR) 2.41) and BMI over 45Kg/m2 (OR 1.71 ). As for FEV1 <80% predicted, all predictor variables were associated, with the largest odds presented by the NC (3.40). MVVV was not associated with any studied varaible. Conclusion: Individuals with NC above 42 cm had higher prevalence of reduced lung function and the NC was the measure with the highest association with reduced lung function in obese.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Methods Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. Results The slope for each regression equation was statistically significant (P < .001) with R2 values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Conclusions Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The aim of this study was to compare through surface electromyographic (sEMG) recordings of the maximum voluntary contraction (MVC) on dry land and in water by manual muscle test (MMT). Method Sixteen healthy right-handed subjects (8 males and 8 females) participated in measurement of muscle activation of the right shoulder. The selected muscles were the cervical erector spinae, trapezius, pectoralis, anterior deltoid, middle deltoid, infraspinatus and latissimus dorsi. The MVC test conditions were random with respect to the order on the land/in water. Results For each muscle, the MVC test was performed and measured through sEMG to determine differences in muscle activation in both conditions. For all muscles except the latissimus dorsi, no significant differences were observed between land and water MVC scores (p = 0.063–0.679) and precision (%Diff = 7–10%) were observed between MVC conditions in the muscles trapezius, anterior deltoid and middle deltoid. Conclusions If the procedure for data collection is optimal, under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during wáter immersion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To investigate whether venous occlusion plethysmography (VOP) may be used to measure high rates of arterial inflow associated with exercise, venous occlusions were performed at rest, and following dynamic handgrip exercise at 15, 30, 45, and 60 % of maximum voluntary contraction (MVC) in seven healthy males. The effect of including more than one cardiac cycle in the calculation of blood flow was assessed by comparing the cumulative blood flow over one, two, three, or four cardiac cycles. The inclusion of more than one cardiac cycle at 30 and 60 % MVC, and more than two cardiac cycles at 15 and 45 % MVC resulted in a lower blood flow compared to using only the first cardiac cycle (P < 0.05). Despite the small time interval over which arterial inflow was measured (~1 second), this did not affect the reproducibility of the technique. Reproducibility (coefficient of variation for arterial inflow over three trials) tended to be poorer at the higher workloads, although this was not significant (12.7 ± 6.6 %, 16.2 ± 7.3 %, and 22.9 ± 9.9 % for the 15, 30, and 45 % MVC workloads; P=0.102). There was also a tendency for greater reproducibility with the inclusion of more cardiac cycles at the highest workload, but this did not reach significance (P=0.070). In conclusion, when calculated over the first cardiac cycle only during venous occlusion, high rates of FBF can be measured using VOP, and this can be achieved without a significant decrease in the reproducibility of the measurement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC). Results: Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P < 0.05), and remained at this higher level 180 seconds into exercise (P < 0.05 versus rest). The increase in ATP was mirrored by a decrease in venous oxygen content. While there was no significant relationship between ATP concentration and venous oxygen content at 30 seconds of exercise, they were moderately and inversely correlated at 180 seconds of exercise (r = -0.651, P = 0.021). Arterial ATP concentration remained unchanged throughout exercise, resulting in an increase in the venous-arterial ATP difference. Conclusions: Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives The purpose of the study was to establish regression equations that could be used to predict muscle thickness and pennation angle at different intensities from electromyography (EMG) based measures of muscle activation during isometric contractions. Design Cross-sectional study. Methods Simultaneous ultrasonography and EMG were used to measure pennation angle, muscle thickness and muscle activity of the rectus femoris and vastus lateralis muscles, respectively, during graded isometric knee extension contractions performed on a Cybex dynamometer. Data form fifteen male soccer players were collected in increments of approximately 25% intensity of the maximum voluntary contraction (MVC) ranging from rest to MVC. Results There was a significant correlation (P < 0.05) between ultrasound predictors and EMG measures for the muscle thickness of rectus femoris with an R2 value of 0.68. There was no significant correlation (P > 0.05) between ultrasound pennation angle for the vastus lateralis predictors for EMG muscle activity with an R2 value of 0.40. Conclusions The regression equations can be used to characterise muscle thickness more accurately and to determine how it changes with contraction intensity, this provides improved estimates of muscle force when using musculoskeletal models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Use of the hand is vital in working life due to the grabbing and pinching it performs. Spherical grip is the most commonly used, due to similarity to the gripping of a computer mouse. Knowledge of its execution and the involved elements is essential. Analysis of this exertion with surface electromyography devices (to register muscular activity) and accelerometer devices (to register movement values ) can provide multiple variables. Six subjects performed ball gripping and registered real-time electromyography (thenar region, hypothenar region, first dorsal interosseous, flexors of the wrist, flexor carpi ulnaris and extensors of the wrist muscles) and accelerometer (thumb, index, middle, ring, pinky and palm) values. The obtained data was resampled “R software” and processed “Matlab Script” based on an automatic numerical sequence recognition program. Electromyography values were normalized on the basis of maximum voluntary contraction, whilst modular values were calculated for the acceleration vector. After processing and analysing the obtained data and signal, it was possible to identify five stages of movement in accordance with the module vector from the palm. The statistical analysis of the variables was descriptive: average and standard deviations. The outcome variables focus on the variations of the modules of the vector (between the maximum and minimum values of each module and phase) and the maximum values of the standardized electromyography of each muscle. Analysis of movement through accelerometer and electromyography variables can give us an insight into the operation of spherical grip. The protocol and treatment data can be used as a system to complement existing assessments in the hand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background The hand is an element of great importance to humans, as it enables us to have different grips. Its analysis, based on an accelerometer and electromyography, is critical in order to determine its operation. The processing and analysis of variables obtained by these devices offer a different approach in functional assessment. Therefore, knowledge of the muscles and elements of the hand in the grip force will offer a better approach for different interventions. Method The functionality of the hand of seven healthy subjects was parameterized and synchronized in real time based on grip force. The AcceleGlove was used to register accelerometric (fingers and palm) values and the Mega ME6000 was used for the surface electromyography and maximum voluntary contraction for the hand and forearm muscles. A computer script based on “R” and MATLAB software was developed to enable the correct interpretation of the main variables (variation of acceleration and maximum peak value of electromyography). Results The muscles of greater activity in grip was found in the hypothenar region (0.313 ± 0.148%) and the flexor ulnaris carpi (0.360 ± 0.118%), based on maximum voluntary contraction. Reference values in the module vector of the palm have proved an essential element for the identification of the movement phases. The ring and index fingers were the elements with the greatest variation of acceleration in the movement phases. Conclusion: Parameterization of the force grip and fragmentation of the registered data has been made possible due to the development of a technical procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cold water immersion (CWI) and active recovery (ACT) are frequently used as post-exercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q), muscle oxygenation (SmO2) and blood volume (tHb), muscle temperature (Tmuscle ) and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q (7.9±2.7 l) and Tmuscle (2.2±0.8ºC) increased, whereas SmO2 (-21.5±8.8%) and tHb (-10.1±7.7 μM) decreased after exercise (p<0.05). During CWI, Q ̇(-1.1±0.7 l) and Tmuscle (-6.6±5.3ºC) decreased, while tHb (121±77 μM) increased (p<0.05). In the hour after CWI, Q ̇and Tmuscle remained low, while tHb also decreased (p<0.05). By contrast, during ACT, Q ̇(3.9±2.3 l), Tmuscle (2.2±0.5ºC), SmO2 (17.1±5.7%) and tHb (91±66 μM) all increased (p<0.05). In the hour after ACT, Tmuscle and tHb remained high (p<0.05). Peak isometric strength during 10 s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; p<0.05). Muscle deoxygenation time during MVCs increased after ACT (p<0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (p=0.052). These findings suggest firstly that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and secondly, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of this work was to investigate stability in relation to the magnitude and direction of forces applied by the hand. The endpoint stiffness and joint stiffness of the arm were measured during a postural task in which subjects exerted up to 30% maximum voluntary force in each of four directions while controlling the position of the hand. All four coefficients of the joint stiffness matrix were found to vary linearly with both elbow and shoulder torque. This contrasts with the results of a previous study, which employed a force control task and concluded that the joint stiffness coefficients varied linearly with either shoulder or elbow torque but not both. Joint stiffness was transformed into endpoint stiffness to compare the effect on stability as endpoint force increased. When the joint stiffness coefficients were modeled as varying with the net torque at only one joint, as in the previous study, we found that hand position became unstable if endpoint force exceeded about 22 N in a specific direction. This did not occur when the joint stiffness coefficients were modeled as varying with the net torque at both joints, as in the present study. Rather, hand position became increasingly more stable as endpoint force increased for all directions of applied force. Our analysis suggests that co-contraction of biarticular muscles was primarily responsible for the increased stability. This clearly demonstrates how the central nervous system can selectively adapt the impedance of the arm in a specific direction to stabilize hand position when the force applied by the hand has a destabilizing effect in that direction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consideration was given to means of increasing the reliability and muscle specificity of paired associative stimulation (PAS) by utilising the phenomenon of crossed-facilitation. Eight participants completed three separate sessions: isometric flexor contractions of the left wrist at 20% of maximum voluntary contraction (MVC) simultaneously with PAS (20s intervals; 14 min duration) delivered at the right median nerve and left primary motor cortex (MI); isometric contractions at 20% of MVC: and PAS only ( 14 min). Eight further participants completed two sessions of longer duration PAS (28 min): either alone or in conjunction with flexion contractions of the left wrist. Thirty motor potentials (MEPs) were evoked in the right flexor (rFCR) and extensor (rECR) carpi radialis muscles by magnetic stimulation of left M1 Prior to the interventions, immediately post-intervention, and 10 min post-intervention. Both 14 and 28 min of combined PAS and (left wrist flexion) contractions resulted in reliable increases in rFCR MEP amplitude, which were not present in rECR. In the PAS only conditions, 14 min of stimulation gave rise to unreliable increases in MEP amplitudes in rFCR and rECR, whereas 28 min of PAS induced small (unreliable) changes only for rFCR. These results support the conclusion that changes in the excitability of the corticospinal pathway induced by PAS interact with those associated with contraction of the muscles ipsilateral to the site of cortical stimulation. Furthermore, focal contractions applied by the opposite limb increase the extent and muscle specificity of the induced changes in excitability associated with PAS. (C) 2008 Elsevier Ireland Ltd. All rights reserved.