872 resultados para Maximum voluntary isometric contractions
Resumo:
This study compared voluntary (VOL) and electrically evoked isometric contractions by muscle stimulation (EMS) for changes in biceps brachii muscle oxygenation (tissue oxygenation index, ΔTOI) and total haemoglobin concentration (ΔtHb = oxygenated haemoglobin + deoxygenated haemoglobin) determined by near-infrared spectroscopy. Twelve men performed EMS with one arm followed 24 h later by VOL with the contralateral arm, consisting of 30 repeated (1-s contraction, 1-s relaxation) isometric contractions at 30% of maximal voluntary contraction (MVC) for the first 60 s, and maximal intensity contractions thereafter (MVC for VOL and maximal tolerable current at 30 Hz for EMS) until MVC decreased ∼30% of pre-exercise MVC. During the 30 contractions at 30% MVC, ΔTOI decrease was significantly (P < 0.05) greater and ∼tHb was significantly (P < 0.05) lower for EMS than VOL, suggesting that the metabolic demand for oxygen in EMS is greater than VOL at the same torque level. However, during maximal intensity contractions, although EMS torque (∼40% of VOL) was significantly (P < 0.05) lower than VOL, ΔTOI was similar and ΔtHb was significantly (P < 0.05) lower for EMS than VOL towards the end, without significant differences between the two sessions in the recovery period. It is concluded that the oxygen demand of the activated biceps brachii muscle in EMS is comparable to VOL at maximal intensity. © Springer-Verlag 2009.
Resumo:
When a muscle contracts it produces vibrations. The origin of these vibrations is not known in detail. The purpose of this study was to determine the mechanism associated with muscle vibrations. Mechanisms which have been proposed in the literature were described as theories (cross-bridge cycling, vibrating string and unfused motor unit theories). Specific predictions were derived from each theory, and tested in three conceptually different studies. In the first study, the influence of recruitment strategies of motor units (MUs) on the vibromyographic (VMG) signal was studied in the in-situ cat soleus using electrical stimulation of the soleus nerve. VMG signals increased with increasing recruitment and decreased with increasing firing rates of MUs. Similar results were obtained for the human rectus femoris (RF) muscle using percutaneous electrical stimulation of the femoral nerve. The influence of MU activation on muscle vibrations was studied in RF by analyzing VMG signals at different percentages (0-100%) of the maximal voluntary contraction (MVC). In our second study, we tested the effects of changing the material properties of the in-situ cat soleus (through muscle length changes) on the VMG signal. The magnitude of the VMG signal was higher for intermediate muscle lengths compared to the longest and the shortest muscle lengths. The decreased magnitude of the VMG signal at the longest and at the shortest muscle lengths was associated with increased passive stiffness and with decreased force transients during unfused contractions, respectively. In the third study, the effect of fatigue on muscle vibrations was studied in human RF and vastus lateralis (VL) musc1es during isometric voluntary contractions at a leveI of 70% MVC. A decrease in the VMG signal magnitude was observed in RF (presumably due to derecruitment of MUs) and an increase in VL (probably related to the enhancement of physiological tremor, which may have occurred predorninantly in a mediolateral direction) with fatigue. The unfused MU theory, which is based on the idea that force transients produced by MUs during unfused tetanic contraction is the mechanism for muscle vibrations, was supported by the results obtained in the above three studies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Afin d’être représentatif d’un niveau d’effort musculaire, le signal électromyographique (EMG) est exprimé par rapport à une valeur d’activation maximale. Comme l’épaule est une structure articulaire et musculaire complexe, aucune contraction volontaire isométrique (CVMi) proposée dans la littérature ne permet d’activer maximalement un même muscle de l’épaule pour un groupe d’individus. L’objectif de ce mémoire est de développer une approche statistique permettant de déterminer les CVMi optimales afin de maximiser les niveaux d’activation d’un ensemble de muscles de l’épaule. L’amplitude du signal EMG de 12 muscles de l’épaule a été enregistrée chez 16 sujets alors qu’ils effectuaient 15 CVMi. Une première approche systématique a permis de déterminer les 4 CVMi parmi les 15 qui ensemble maximisent les niveaux d’activation pour les 12 muscles simultanément. Ces 4 contractions ont donné des niveaux d’activation supérieurs aux recommandations antérieures pour 4 muscles de l’épaule. Une seconde approche a permis de déterminer le nombre minimal de CVMi qui sont nécessaires afin de produire un niveau d’activation qui n’est pas significativement différent des valeurs d’activation maximales pour les 16 sujets. Pour 12 muscles de l’épaule, un total de 9 CVMi sont requises afin de produire des valeurs d’activation qui sont représentatives de l’effort maximal de tous les sujets. Ce mémoire a proposé deux approches originales, dont la première a maximisé les niveaux d’activation qui peuvent être produits à partir d’un nombre fixe de CVMi tandis que la deuxième a permis d’identifier le nombre minimal de CVMi nécessaire afin de produire des niveaux d’activation qui ne sont pas significativement différentes des valeurs d’activation maximales. Ces deux approches ont permis d’émettre des recommandations concernant les CVMi nécessaires à la normalisation de l’EMG afin de réduire les risques de sous-estimer l’effort maximal d’un ensemble d’individus.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study, using surface electromyography, analyzed the activity of the masseter muscles of 30 patients with facial bone fractures that were surgically treated. Evaluations were made before surgery and in the 7th, 30th, and 60th days after surgery. The value of each measure and the average of 3 maximum voluntary isometric contractions lasting 5 seconds each were registered, and statistical analyses were performed. Patients had a mean age of 31 years and an average of 1.33 fractures. They were grouped according to the type of fracture as follows: mandibular (50%), zygomatic complex (33%), maxilla (10%), and associated fractures (6.7%). There was a lower masseter activity in the preoperative period, when compared with normal values in all groups of fractures. There was a sharp drop in the masseter activity in the postoperative period of 7 days, and all groups showed recovery of activity in 60 days but still below the normal value referenced in the literature. The mean values of the masseter activity, in descending order, were from the zygomatic complex, mandibular, maxillary, and associated fractures. The unilateral mandibular fractures showed higher values than the bilateral fractures in most of the evaluations. There was a highly significant difference in the comparison of the evolution of the masseter activity on both sides, for mandibular and zygomatic complex fractures, and the pairwise comparison showed significant difference between most groups. It was concluded that facial fractures and surgical procedures had negative effects in the muscle activity as observed using electromyography.
Resumo:
Objectives Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Methods Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. Results The slope for each regression equation was statistically significant (P < .001) with R2 values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Conclusions Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.
Resumo:
Objectives The purpose of the study was to establish regression equations that could be used to predict muscle thickness and pennation angle at different intensities from electromyography (EMG) based measures of muscle activation during isometric contractions. Design Cross-sectional study. Methods Simultaneous ultrasonography and EMG were used to measure pennation angle, muscle thickness and muscle activity of the rectus femoris and vastus lateralis muscles, respectively, during graded isometric knee extension contractions performed on a Cybex dynamometer. Data form fifteen male soccer players were collected in increments of approximately 25% intensity of the maximum voluntary contraction (MVC) ranging from rest to MVC. Results There was a significant correlation (P < 0.05) between ultrasound predictors and EMG measures for the muscle thickness of rectus femoris with an R2 value of 0.68. There was no significant correlation (P > 0.05) between ultrasound pennation angle for the vastus lateralis predictors for EMG muscle activity with an R2 value of 0.40. Conclusions The regression equations can be used to characterise muscle thickness more accurately and to determine how it changes with contraction intensity, this provides improved estimates of muscle force when using musculoskeletal models.
Resumo:
OBJECTIVE: To determine differences between hypermobile subjects and controls in terms of maximum strength, rate of force development, and balance. METHODS: We recruited 13 subjects with hypermobility and 18 controls. Rate of force development and maximal voluntary contraction (MVC) during single leg knee extension of the right knee were measured isometrically for each subject. Balance was tested twice on a force plate with 15-second single-leg stands on the right leg. Rate of force development (N/second) and MVC (N) were extracted from the force-time curve as maximal rate of force development (= limit Deltaforce/Deltatime) and the absolute maximal value, respectively. RESULTS: The hypermobile subjects showed a significantly higher value for rate of force development (15.2% higher; P = 0.038, P = 0.453, epsilon = 0.693) and rate of force development related to body weight (16.4% higher; P = 0.018, P = 0.601, epsilon = 0.834) than the controls. The groups did not differ significantly in MVC (P = 0.767, P = 0.136, epsilon = 0.065), and MVC related to body weight varied randomly between the groups (P = 0.921, P = 0.050, epsilon = 0.000). In balance testing, the mediolateral sway of the hypermobile subjects showed significantly higher values (11.6% higher; P = 0.034, P = 0.050, epsilon = 0.000) than that of controls, but there was no significant difference (4.9% difference; P = 0.953, P = 0.050, epsilon = 0.000) in anteroposterior sway between the 2 groups. CONCLUSION: Hypermobile women without acute symptoms or limitations in activities of daily life have a higher rate of force development in the knee extensors and a higher mediolateral sway than controls with normal joint mobility.
Resumo:
We examine the test-retest reliability of biceps brachii tissue oxygenation index (TOI) parameters measured by near-infrared spectroscopy during a 10-s sustained and a 30-repeated (1-s contraction, 1-s relaxation) isometric contraction task at 30% of maximal voluntary contraction (30% MVC) and maximal (100% MVC) intensities. Eight healthy men (23 to 33 yr) were tested on three sessions separated by 3 h and 24 h, and the within-subject reliability of torque and each TOI parameter were determined by Bland-Altman+/-2 SD limits of agreement plots and coefficient of variation (CV). No significant (P>0.05) differences between the three sessions were found for mean values of torque and TOI parameters during the sustained and repeated tasks at both contraction intensities. All TOI parameters were within+/-2 SD limits of agreement. The CVs for torque integral were similar between the sustained and repeated task at both intensities (4 to 7%); however, the CVs for TOI parameters during the sustained and repeated task were lower for 100% MVC (7 to 11%) than for 30% MVC (22 to 36%). It is concluded that the reliability of the biceps brachii NIRS parameters during both sustained and repeated isometric contraction tasks is acceptable.
Resumo:
Background The aim of this study was to compare through surface electromyographic (sEMG) recordings of the maximum voluntary contraction (MVC) on dry land and in water by manual muscle test (MMT). Method Sixteen healthy right-handed subjects (8 males and 8 females) participated in measurement of muscle activation of the right shoulder. The selected muscles were the cervical erector spinae, trapezius, pectoralis, anterior deltoid, middle deltoid, infraspinatus and latissimus dorsi. The MVC test conditions were random with respect to the order on the land/in water. Results For each muscle, the MVC test was performed and measured through sEMG to determine differences in muscle activation in both conditions. For all muscles except the latissimus dorsi, no significant differences were observed between land and water MVC scores (p = 0.063–0.679) and precision (%Diff = 7–10%) were observed between MVC conditions in the muscles trapezius, anterior deltoid and middle deltoid. Conclusions If the procedure for data collection is optimal, under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during wáter immersion.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aimed to compare the torque, torque ratio (Hamstrings:Quadriceps - H:Q), electromyographic (EMG) activity and EMG ratio (knee flexors:knee extensors EMG) in soccer players (SG, N=10) and active subjects (AG, N=10). Subjects performed three maximal voluntary isometric knee extensions and flexions at 45° and 90° to determine the peak torque and EMG activity. Torque and EMG activity of the knee flexor (biceps femoris [BF] and semitendinosus [ST]) were divided by the torque and EMG activity of the knee extensor (vastuls lateralis [VL] and rectus femoris [RF]) to calculate torque ratios (H:Q) and EMG ratios (BF:VL, BF:RF, ST:VL, ST:RF). The flexion torque was significantly higher for SG (p<0.05) in 45° and 90°. EMG activity for SG was significantly higher in agonist contractions for VL, RF and ST, and significantly lower in antagonist contractions for RF and ST when compared to AG Torque and EMG ratios were similar between groups and there were good correlations between torque ratio and BF:VL ratio (r=0.71, p=0.02) and BF:RF ratio (r=0.81, p=0.004) at 45. The EMG results could overestimate the joint balance calculated using torque ratios. Differences in recruitment pattern between soccer players and non-athletes can be related to the training routines and the EMG ratios presents applicable in trained populations.
Resumo:
The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23–39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2–3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0Æ05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0Æ05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0Æ05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.