865 resultados para Maximum power point tracking
Resumo:
Partial shading and rapidly changing irradiance conditions significantly impact on the performance of photovoltaic (PV) systems. These impacts are particularly severe in tropical regions where the climatic conditions result in very large and rapid changes in irradiance. In this paper, a hybrid maximum power point (MPP) tracking (MPPT) technique for PV systems operating under partially shaded conditions witapid irradiance change is proposed. It combines a conventional MPPT and an artificial neural network (ANN)-based MPPT. A low cost method is proposed to predict the global MPP region when expensive irradiance sensors are not available or are not justifiable for cost reasons. It samples the operating point on the stairs of I–V curve and uses a combination of the measured current value at each stair to predict the global MPP region. The conventional MPPT is then used to search within the classified region to get the global MPP. The effectiveness of the proposed MPPT is demonstrated using both simulations and an experimental setup. Experimental comparisons with four existing MPPTs are performed. The results show that the proposed MPPT produces more energy than the other techniques and can effectively track the global MPP with a fast tracking speed under various shading patterns.
Resumo:
Two new maximum power point tracking algorithms are presented: the input voltage sensor, and duty ratio maximum power point tracking algorithm (ViSD algorithm); and the output voltage sensor, and duty ratio maximum power point tracking algorithm (VoSD algorithm). The ViSD and VoSD algorithms have the features, characteristics and advantages of the incremental conductance algorithm (INC); but, unlike the incremental conductance algorithm which requires two sensors (the voltage sensor and current sensor), the two algorithms are more desirable because they require only one sensor: the voltage sensor. Moreover, the VoSD technique is less complex; hence, it requires less computational processing. Both the ViSD and the VoSD techniques operate by maximising power at the converter output, instead of the input. The ViSD algorithm uses a voltage sensor placed at the input of a boost converter, while the VoSD algorithm uses a voltage sensor placed at the output of a boost converter. © 2011 IEEE.
Resumo:
Single-sensor maximum power point tracking algorithms for photovoltaic systems are presented. The algorithms have the features, characteristics and advantages of the widely used incremental conductance (INC) algorithm. However; unlike the INC algorithm which requires two sensors (the voltage sensor and the current sensor), the single-sensor algorithms are more desirable because they require only one sensor: the voltage sensor. The algorithms operate by maximising power at the DC-DC converter output, instead of the input. © 2013 The Institution of Engineering and Technology.
Resumo:
Maximum Power Point tracking (MPPT) in photovoltaic (PV) systems may be achieved by controlling either the voltage or current of the PV device. There is no consensus in the technical literature about how is the best choice. This paper provides a comparative analysis performance among current and voltage control using two different MPPT strategies: the perturb and observe (P&O) and the incremental conductance techniques. © 2011 IEEE.
Resumo:
This paper presents evaluations among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic panel (PV) (Tracking Factor - TF) in relation to the available power, PV voltage ripple, dynamic response and use of sensors. Using MatLab/Simulink® and DSpace platforms, a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented and a contribution in the implementation of the IC algorithm is performed and called IC based on PI. Moreover, the dynamic response and the tracking factor are also evaluated using a Friendly User Interface, which is capable of online program power curves and compute the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2011 IEEE.
Resumo:
A low-cost circuit was developed for stable and efficient maximum power point (MPP) tracking in autonomous photo voltaic-motor systems with variable-frequency drives (VFDs). The circuit is made of two resistors, two capacitors, and two Zener diodes. Its input is the photovoltaic (PV) array voltage and its output feeds the proportional-integral-derivative (PID) controller usually integrated into, the drive. The steady-state frequency-voltage oscillations induced by the circuit were treated in a simplified mathematical model, which was validated by widely characterizing a PV-powered centrifugal pump. General procedures for circuit and controller tuning were recommended based on model equations. The tracking circuit presented here is widely applicable to PV-motor system with VFDs, offering an. efficient open-access technology of unique simplicity. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Many grid connected PV installations consist of a single series string of PV modules and a single DC-AC inverter. This efficiency of this topology can be enhanced with additional low power, low cost per panel converter modules. Most current flows directly in the series string which ensures high efficiency. However parallel Cúk or buck-boost DC-DC converters connected across each adjacent pair of modules now support any desired current difference between series connected PV modules. Each converter “shuffles” the desired difference in PV module currents between two modules and so on up the string. Spice simulations show that even with poor efficiency, these modules can make a significant improvement to the overall power which can be recovered from partially shaded PV strings.
Resumo:
Piezoelectric ultrasound transducers are commonly used to convert mechanical energy to electrical energy and vice versa. The transducer performance is highly affected by the frequency at which it is excited. If excitation frequency and main resonant frequency match, transducers can deliver maximum power. However, the problem is that main resonant frequency changes in real time operation resulting in low power conversion. To achieve the maximum possible power conversion, the transducer should be excited at its resonant frequency estimated in real time. This paper proposes a method to first estimate the resonant frequency of the transducer and then tunes the excitation frequency accordingly in real time. The measurement showed a significant difference between the offline and real time resonant frequencies. Also, it was shown that the maximum power was achieved at the resonant frequency estimated in real time compare to the one measured offline.
Resumo:
Thermoelectric generators (TEGs) are solid-state devices that can be used for the direct conversion between heat and electricity. These devices are an attractive option for generating clean energy from heat. There are two modes of operation for TEGs; constant heat and constant temperature. It is a well-known fact that for constant temperature operation, TEGs have a maximum power point lying at half the open circuit voltage of the TEG, for a particular temperature. This work aimed to investigate the position of the maximum power point for Bismuth Telluride TEGs working under constant heat conditions i.e. the heat supply to the TEG is fixed however the temperature across the TEG can vary depending upon its operating conditions. It was found that for constant heat operation, the maximum power point for a TEG is greater than half the open circuit voltage of the TEG.
Resumo:
In this paper, a wind energy conversion system interfaced to the grid using a dual inverter is proposed. One of the two inverters in the dual inverter is connected to the rectified output of the wind generator while the other is directly connected to a battery energy storage system (BESS). This approach eliminates the need for an additional dc-dc converter and thus reduces power losses, cost, and complexity. The main issue with this scheme is uncorrelated dynamic changes in dc-link voltages that results in unevenly distributed space vectors. A detailed analysis on the effects of these variations is presented in this paper. Furthermore, a modified modulation technique is proposed to produce undistorted currents even in the presence of unevenly distributed and dynamically changing space vectors. An analysis on the battery charging/discharging process and maximum power point tracking of the wind turbine generator is also presented. Simulation and experimental results are presented to verify the efficacy of the proposed modulation technique and battery charging/discharging process.