987 resultados para Maximum Tolerated Dose


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment for cancer often involves combination therapies used both in medical practice and clinical trials. Korn and Simon listed three reasons for the utility of combinations: 1) biochemical synergism, 2) differential susceptibility of tumor cells to different agents, and 3) higher achievable dose intensity by exploiting non-overlapping toxicities to the host. Even if the toxicity profile of each agent of a given combination is known, the toxicity profile of the agents used in combination must be established. Thus, caution is required when designing and evaluating trials with combination therapies. Traditional clinical design is based on the consideration of a single drug. However, a trial of drugs in combination requires a dose-selection procedure that is vastly different than that needed for a single-drug trial. When two drugs are combined in a phase I trial, an important trial objective is to determine the maximum tolerated dose (MTD). The MTD is defined as the dose level below the dose at which two of six patients experience drug-related dose-limiting toxicity (DLT). In phase I trials that combine two agents, more than one MTD generally exists, although all are rarely determined. For example, there may be an MTD that includes high doses of drug A with lower doses of drug B, another one for high doses of drug B with lower doses of drug A, and yet another for intermediate doses of both drugs administered together. With classic phase I trial designs, only one MTD is identified. Our new trial design allows identification of more than one MTD efficiently, within the context of a single protocol. The two drugs combined in our phase I trial are temsirolimus and bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) pathway which is fundamental for tumor growth and metastasis. One mechanism of tumor resistance to antiangiogenic therapy is upregulation of hypoxia inducible factor 1α (HIF-1α) which mediates responses to hypoxic conditions. Temsirolimus has resulted in reduced levels of HIF-1α making this an ideal combination therapy. Dr. Donald Berry developed a trial design schema for evaluating low, intermediate and high dose levels of two drugs given in combination as illustrated in a recently published paper in Biometrics entitled “A Parallel Phase I/II Clinical Trial Design for Combination Therapies.” His trial design utilized cytotoxic chemotherapy. We adapted this design schema by incorporating greater numbers of dose levels for each drug. Additional dose levels are being examined because it has been the experience of phase I trials that targeted agents, when given in combination, are often effective at dosing levels lower than the FDA-approved dose of said drugs. A total of thirteen dose levels including representative high, intermediate and low dose levels of temsirolimus with representative high, intermediate, and low dose levels of bevacizumab will be evaluated. We hypothesize that our new trial design will facilitate identification of more than one MTD, if they exist, efficiently and within the context of a single protocol. Doses gleaned from this approach could potentially allow for a more personalized approach in dose selection from among the MTDs obtained that can be based upon a patient’s specific co-morbid conditions or anticipated toxicities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase I trials use a small number of patients to define a maximum tolerated dose (MTD) and the safety of new agents. We compared data from phase I and registration trials to determine whether early trials predicted later safety and final dose. We searched the U.S. Food and Drug Administration (FDA) website for drugs approved in nonpediatric cancers (January 1990-October 2012). The recommended phase II dose (R2PD) and toxicities from phase I were compared with doses and safety in later trials. In 62 of 85 (73%) matched trials, the dose from the later trial was within 20% of the RP2D. In a multivariable analysis, phase I trials of targeted agents were less predictive of the final approved dose (OR, 0.2 for adopting ± 20% of the RP2D for targeted vs. other classes; P = 0.025). Of the 530 clinically relevant toxicities in later trials, 70% (n = 374) were described in phase I. A significant relationship (P = 0.0032) between increasing the number of patients in phase I (up to 60) and the ability to describe future clinically relevant toxicities was observed. Among 28,505 patients in later trials, the death rate that was related to drug was 1.41%. In conclusion, dosing based on phase I trials was associated with a low toxicity-related death rate in later trials. The ability to predict relevant toxicities correlates with the number of patients on the initial phase I trial. The final dose approved was within 20% of the RP2D in 73% of assessed trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: EMD 521873 (Selectikine), an immunocytokine comprising a DNA-targeting antibody, aimed at tumour necrosis, fused with a genetically modified interleukin-2 (IL-2) moiety, was investigated in this first-in-human phase I study. METHODS: Patients had metastatic or locally advanced solid tumours failing previous standard therapy. Selectikine was administered as a 1-hour intravenous infusion on 3 consecutive days, every 3weeks. A subgroup of patients also received 300mg/m(2) cyclophosphamide on day 1 of each cycle. Escalating doses of Selectikine were investigated with the primary objective of determining the maximum tolerated dose (MTD). RESULTS: Thirty-nine patients were treated with Selectikine alone at dose levels from 0.075 to 0.9mg/kg, and nine were treated at doses of 0.45 and 0.6mg/kg in combination with cyclophosphamide. A dose-dependent linear increase of peak serum concentrations and area under curve was found. The dose-limiting toxicity was grade 3 skin rash at the 0.9mg/kg dose-level; the MTD was 0.6mg/kg. Rash and flu-like symptoms were the most frequent side-effects. No severe cardiovascular side-effects (hypotension or vascular leak) were observed. At all dose-levels, transient increases in total lymphocyte, eosinophil and monocyte counts were recorded. No objective tumour responses, but long periods of disease stabilisation were observed. Transient and non-neutralising Selectikine antibodies were detected in 69% of patients. CONCLUSIONS: The MTD of Selectikine with or without cyclophosphamide administered under this schedule was 0.6mg/kg. The recommended phase II dose was 0.45-0.6mg/kg. Selectikine had a favourable safety profile and induced biological effects typical for IL-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Having determined in a phase I study the maximum tolerated dose of high-dose ifosfamide combined with high-dose doxorubicin, we now report the long-term results of a phase II trial in advanced soft-tissue sarcomas. Forty-six patients with locally advanced or metastatic soft-tissue sarcomas were included, with age <60 years and all except one in good performance status (0 or 1). The chemotherapy treatment consisted of ifosfamide 10 g m(-2) (continuous infusion for 5 days), doxorubicin 30 mg m(-2) day(-1) x 3 (total dose 90 mg m(-2)), mesna and granulocyte-colony stimulating factor. Cycles were repeated every 21 days. A median of 4 (1-6) cycles per patient was administered. Twenty-two patients responded to therapy, including three complete responders and 19 partial responders for an overall response rate of 48% (95% CI: 33-63%). The response rate was not different between localised and metastatic diseases or between histological types, but was higher in grade 3 tumours. Median overall survival was 19 months. Salvage therapies (surgery and/or radiotherapy) were performed in 43% of patients and found to be the most significant predictor for favourable survival (exploratory multivariate analysis). Haematological toxicity was severe, including grade > or =3 neutropenia in 59%, thrombopenia in 39% and anaemia in 27% of cycles. Three patients experienced grade 3 neurotoxicity and one patient died of septic shock. This high-dose regimen is toxic but nonetheless feasible in multicentre settings in non elderly patients with good performance status. A high response rate was obtained. Prolonged survival was mainly a function of salvage therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Cabazitaxel is approved in patients with metastatic hormone-refractory prostate cancer previously treated with a docetaxel-containing regimen. This study evaluated a weekly cabazitaxel dosing regimen. Primary objectives were to report dose-limiting toxicities (DLTs) and to determine the maximum tolerated dose (MTD). Efficacy, safety and pharmacokinetics were secondary objectives. METHODS Cabazitaxel was administered weekly (1-hour intravenous infusion at 1.5-12 mg/m2 doses) for the first 4 weeks of a 5-week cycle in patients with solid tumours. Monitoring of DLTs was used to determine the MTD and the recommended weekly dose. RESULTS Thirty-one patients were enrolled. Two of six patients experienced DLTs at 12 mg/m2, which was declared the MTD. Gastrointestinal disorders were the most common adverse event. Eight patients developed neutropenia (three ≥ Grade 3); one occurrence of febrile neutropenia was reported. There were two partial responses (in breast cancer) and 13 patients had stable disease (median duration of 3.3 months). Increases in Cmax and AUC0-t were dose proportional for the 6-12 mg/m2 doses. CONCLUSION The MTD of weekly cabazitaxel was 12 mg/m2 and the recommended weekly dose was 10 mg/m2. The observed safety profile and antitumour activity of cabazitaxel were consistent with those observed with other taxanes in similar dosing regimens. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov as NCT01755390.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to assess the pharmacology, toxicity and activity of high-dose ifosfamide mesna +/- GM-CSF administered by a five-day continuous infusion at a total ifosfamide dose of 12-18 g/m2 in adult patients with advanced sarcomas. PATIENTS AND METHODS: Between January 1991 and October 1992 32 patients with advanced or metastatic sarcoma were entered the study. Twenty-seven patients were pretreated including twenty-three with prior ifosfamide at less than 8 g/m2 total dose/cycle. In 25 patients (27 cycles) extensive pharmacokinetic analyses were performed. RESULTS: The area under the plasma concentration-time curve (AUC) for ifosfamide increased linearly with dose while the AUC's of the metabolites measured in plasma by thin-layer chromatography did not increase with dose, particularly that of the active metabolite isophosphoramide mustard. Furthermore the AUC of the inactive carboxymetabolite did not increase with dose. Interpatient variability of pharmacokinetic parameters was high. Dose-limiting toxicity was myelosuppression at 18 g/m2 total dose with grade 4 neutropenia in five of six patients and grade 4 thrombocytopenia in four of six patients. Therefore the maximum tolerated dose was considered to be 18 g/m2 total dose. There was one CR and eleven PR in twenty-nine evaluable patients (overall response rate 41%). CONCLUSION: Both the activation and inactivation pathways of ifosfamide are non-linear and saturable at high-doses although the pharmacokinetics of the parent drug itself are dose linear. Ifosfamide doses greater than 14-16 g/m2 per cycle appear to result in a relative decrease of the active metabolite isophosphoramide mustard. These data suggest a dose-dependent saturation or even inhibition of ifosfamide metabolism by increasing high dose ifosfamide and suggest the need for further metabolic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given that cancer is one of the main causes of death worldwide, many efforts have been directed toward discovering new treatments and approaches to cure or control this group of diseases. Chemotherapy is the main treatment for cancer; however, a conventional schedule based on maximum tolerated dose (MTD) shows several side effects and frequently allows the development of drug resistance. On the other side, low dose chemotherapy involves antiangiogenic and immunomodulatory processes that help host to fight against tumor cells, with lower grade of side effects. In this review, we present evidence that metronomic chemotherapy, based on the frequent administration of low or intermediate doses of chemotherapeutics, can be better than or as efficient as MTD. Finally, we present some data indicating that noncytotoxic concentrations of antineoplastic agents are able to both up-regulate the immune system and increase the susceptibility of tumor cells to cytotoxic T lymphocytes. Taken together, data from the literature provides us with sufficient evidence that low concentrations of selected chemotherapeutic agents, rather than conventional high doses, should be evaluated in combination with immunotherapy. Copyright © 2012 UICC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays cancer is one of the main causes of death and many efforts worldwide have been driven to find out new treatments and approaches in order to extinguish or reduce this group of disorder. Chemotherapy is the main treatment for cancer, however, conventional schedule based on maximum tolerated dose (MTD) show several side effects and frequently allow the development of drug resistance. In this review we present the evidence that metronomic chemotherapy, based on the frequent administration of low or intermediate doses of chemotherapeutics is as efficient as MTD and works better in some situations. Finally, we present some data indicating that noncytotoxic concentrations of antineoplastic agents are able to both up-regulate the immune system and increase the susceptibility of tumor cells to cytotoxic T lymphocytes. Taken together, data from the literature provide us the evidence that low concentrations of selected chemotherapeutics agents, rather than conventional high doses, should be chosen for combination with immunotherapy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptors for luteinizing hormone-releasing hormone (LHRH) can be utilized for targeted chemotherapy of cytotoxic LHRH analogs. The compound AEZS-108 (previously AN-152) consists of [D-Lys?]LHRH linked to doxorubicin. The objectives of this first study in humans with AESZ-108 were to determine the maximum tolerated dose and to characterize the dose-limiting toxicity, pharmacokinetics, preliminary efficacy, and hormonal effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Having determined in a phase I study the maximum tolerated dose of high-dose ifosfamide combined with high-dose doxorubicin, we now report the long-term results of a phase II trial in advanced soft-tissue sarcomas. Forty-six patients with locally advanced or metastatic soft-tissue sarcomas were included, with age <60 years and all except one in good performance status (0 or 1). The chemotherapy treatment consisted of ifosfamide 10 g m(-2) (continuous infusion for 5 days), doxorubicin 30 mg m(-2) day(-1) x 3 (total dose 90 mg m(-2)), mesna and granulocyte-colony stimulating factor. Cycles were repeated every 21 days. A median of 4 (1-6) cycles per patient was administered. Twenty-two patients responded to therapy, including three complete responders and 19 partial responders for an overall response rate of 48% (95% CI: 33-63%). The response rate was not different between localised and metastatic diseases or between histological types, but was higher in grade 3 tumours. Median overall survival was 19 months. Salvage therapies (surgery and/or radiotherapy) were performed in 43% of patients and found to be the most significant predictor for favourable survival (exploratory multivariate analysis). Haematological toxicity was severe, including grade > or =3 neutropenia in 59%, thrombopenia in 39% and anaemia in 27% of cycles. Three patients experienced grade 3 neurotoxicity and one patient died of septic shock. This high-dose regimen is toxic but nonetheless feasible in multicentre settings in non elderly patients with good performance status. A high response rate was obtained. Prolonged survival was mainly a function of salvage therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation explores phase I dose-finding designs in cancer trials from three perspectives: the alternative Bayesian dose-escalation rules, a design based on a time-to-dose-limiting toxicity (DLT) model, and a design based on a discrete-time multi-state (DTMS) model. We list alternative Bayesian dose-escalation rules and perform a simulation study for the intra-rule and inter-rule comparisons based on two statistical models to identify the most appropriate rule under certain scenarios. We provide evidence that all the Bayesian rules outperform the traditional ``3+3'' design in the allocation of patients and selection of the maximum tolerated dose. The design based on a time-to-DLT model uses patients' DLT information over multiple treatment cycles in estimating the probability of DLT at the end of treatment cycle 1. Dose-escalation decisions are made whenever a cycle-1 DLT occurs, or two months after the previous check point. Compared to the design based on a logistic regression model, the new design shows more safety benefits for trials in which more late-onset toxicities are expected. As a trade-off, the new design requires more patients on average. The design based on a discrete-time multi-state (DTMS) model has three important attributes: (1) Toxicities are categorized over a distribution of severity levels, (2) Early toxicity may inform dose escalation, and (3) No suspension is required between accrual cohorts. The proposed model accounts for the difference in the importance of the toxicity severity levels and for transitions between toxicity levels. We compare the operating characteristics of the proposed design with those from a similar design based on a fully-evaluated model that directly models the maximum observed toxicity level within the patients' entire assessment window. We describe settings in which, under comparable power, the proposed design shortens the trial. The proposed design offers more benefit compared to the alternative design as patient accrual becomes slower.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: For most cytotoxic and biologic anti-cancer agents, the response rate of the drug is commonly assumed to be non-decreasing with an increasing dose. However, an increasing dose does not always result in an appreciable increase in the response rate. This may especially be true at high doses for a biologic agent. Therefore, in a phase II trial the investigators may be interested in testing the anti-tumor activity of a drug at more than one (often two) doses, instead of only at the maximum tolerated dose (MTD). This way, when the lower dose appears equally effective, this dose can be recommended for further confirmatory testing in a phase III trial under potential long-term toxicity and cost considerations. A common approach to designing such a phase II trial has been to use an independent (e.g., Simon's two-stage) design at each dose ignoring the prior knowledge about the ordering of the response probabilities at the different doses. However, failure to account for this ordering constraint in estimating the response probabilities may result in an inefficient design. In this dissertation, we developed extensions of Simon's optimal and minimax two-stage designs, including both frequentist and Bayesian methods, for two doses that assume ordered response rates between doses. ^ Methods: Optimal and minimax two-stage designs are proposed for phase II clinical trials in settings where the true response rates at two dose levels are ordered. We borrow strength between doses using isotonic regression and control the joint and/or marginal error probabilities. Bayesian two-stage designs are also proposed under a stochastic ordering constraint. ^ Results: Compared to Simon's designs, when controlling the power and type I error at the same levels, the proposed frequentist and Bayesian designs reduce the maximum and expected sample sizes. Most of the proposed designs also increase the probability of early termination when the true response rates are poor. ^ Conclusion: Proposed frequentist and Bayesian designs are superior to Simon's designs in terms of operating characteristics (expected sample size and probability of early termination, when the response rates are poor) Thus, the proposed designs lead to more cost-efficient and ethical trials, and may consequently improve and expedite the drug discovery process. The proposed designs may be extended to designs of multiple group trials and drug combination trials.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lipidic nanoemulsion termed LDE concentrates in neoplastic cells after injection into the bloodstream and thus can be used as a drug carrier to tumour sites. The chemotherapeutic agent daunorubicin associates poorly with LDE; the aim of this study was to clarify whether the derivatization of daunorubicin by the attachment of an oleyl group increases the association with LDE, and to test the cytotoxicity and animal toxicity of the new preparation. The association of oleyl-daunorubicin (oDNR) to LDE showed high yield (93 +/- 2% and 84 +/- 4% at 1:10 and 1:5 drug:lipid mass, respectively) and was stable for at least 20 days. Association with oDNR increased the LDE particle diameter from 42 +/- 4 nm to 75 +/- 6 nm. Cytotoxicity of LDE-oDNR was reduced two-fold in HL-60 and K-562 cell lines, fourteen-fold in B16 cells and nine-fold in L1210 cells when compared with commercial daunorubicin. When tested in mice, LDE-oDNR showed remarkable reduced toxicity (maximum tolerated dose > 253 mu mol kg(-1), compared with <3 mu mol kg(-1) for commercial daunorubicin). At high doses, the cardiac tissue of LDE-oDNR-treated animals had much smaller structural lesions than with commercial daunorubicin. LDE-oDNR is therefore a promising new preparation that may offer superior tolerability compared with commercial daunorubicin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Homozygous familial hypercholesterolaemia is a rare genetic disorder in which both LDL-receptor alleles are defective, resulting in very high concentrations of LDL cholesterol in plasma and premature coronary artery disease. This study investigated whether an antisense inhibitor of apolipoprotein B synthesis, mipomersen, is effective and safe as an adjunctive agent to lower LDL cholesterol concentrations in patients with this disease. Methods This randomised, double-blind, placebo-controlled, phase 3 study was undertaken in nine lipid clinics in seven countries. Patients aged 12 years and older with clinical diagnosis or genetic confirmation of homozygous familial hypercholesterolaemia, who were already receiving the maximum tolerated dose of a lipid-lowering drug, were randomly assigned to mipomersen 200 mg subcutaneously every week or placebo for 26 weeks. Randomisation was computer generated and stratified by weight (<50 kg vs >= 50 kg) in a centralised blocked randomisation, implemented with a computerised interactive voice response system. All clinical, medical, and pharmacy personnel, and patients were masked to treatment allocation. The primary endpoint was percentage change in LDL cholesterol concentration from baseline. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00607373. Findings 34 patients were assigned to mipomersen and 17 to placebo; data for all patients were analysed. 45 patients completed the 26-week treatment period (28 mipomersen, 17 placebo). Mean concentrations of LDL cholesterol at baseline were 11.4 mmol/L (SD 3.6) in the mipomersen group and 10.4 mmol/L (3.7) in the placebo group. The mean percentage change in LDL cholesterol concentration was significantly greater with mipomersen (-24.7%, 95% CI 31.6 to 17.7) than with placebo (-3.3%, 12.1 to 5.5; p=0.0003). The most common adverse events were injection-site reactions (26 [76%] patients in mipomersen group vs four [24%] in placebo group). Four (12%) patients in the mipomersen group but none in the placebo group had increases in concentrations of alanine aminotransferase of three times or more the upper limit of normal. Interpretation Inhibition of apolipoprotein B synthesis by mipomersen represents a novel, effective therapy to reduce LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia who are already receiving lipid-lowering drugs, including high-dose statins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that mycobacterial heat-shock protein 65 (hsp65) gene transfer can elicit a profound antitumoral effect, this study aimed to establish the safety, maximum-tolerated dose (MTD) and preliminary efficacy of DNA-hsp65 immunotherapy in patients with advanced head and neck squamous cell carcinoma (HNSCC). For this purpose, 21 patients with unresectable and recurrent HNSCC were studied. Each patient received three ultrasound-guided injections at 21-day intervals of: 150, 600 or 400 mu g of DNA-hsp65. Toxicity was graded according to CTCAE directions. Tumor volume was measured before and after treatment using computed tomography scan. The evaluation included tumor mass variation, delayed-type hypersensitivity response and spontaneous peripheral blood mononuclear cell proliferation before and after treatment. The MTD was 400 mg per dose. DNA-hsp65 immunotherapy was well tolerated with moderate pain, edema and infections as the most frequent adverse effects. None of the patients showed clinical or laboratory alterations compatible with autoimmune reactions. Partial response was observed in 4 out of 14 patients who completed treatment, 2 of which are still alive more than 3 years after the completion of the trial. Therefore, DNA-hsp65 immunotherapy is a feasible and safe approach at the dose of 400 mg per injection in patients with HNSCC refractory to standard treatment. Further studies in a larger number of patients are needed to confirm the efficacy of this novel strategy.