865 resultados para Maximal voluntary contraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gurjao, ALD, Goncalves, R, de Moura, RF, and Gobbi, S. Acute effect of static stretching on rate of force development and maximal voluntary contraction in older women. J Strength Cond Res 23(7): 2149-2154, 2009-The purpose of this study was to investigate, in older women, the acute effect of static stretching (SS) on both muscle activation and force output. Twenty-three older women (64.6 +/- 7.1 yr) participated in the study. The maximal voluntary contraction (MVC), rate of force development (RFD) (50, 100, 150, and 200 ms relative to onset of muscular contraction), and peak RFD (PRFD) (the steepest slope of the curve during the first 200 ms) were tested under 2 randomly separate conditions: SS and control (C). Electromyographic (EMG) activity of the vastus medialis (VM), vastus lateralis (VL), and biceps femoris (BF) muscles also was assessed. The MVC was significantly lower (p < 0.05) in the 3 trials of SS when compared with the C condition (control: 925.0 +/- 50.9 N; trial 1 : 854.3 +/- 55.3 N; trial 2 : 863.1 +/- 52.2 N; and trial 3 : 877.5 +/- 49.9 N). PRFD showed a significant decrease only for the first 2 trials of SS when compared with the C condition (control: 2672.3 +/- 259.1 N/s; trial 1 : 2296.6 +/- 300.7 N/s; and trial 2 : 2197.9 +/- 246.3 N/s). However, no difference was found for RFD (50, 100, 150, and 200 ms relative to onset of muscular contraction). The EMG activity for VM, VL, and BF was not significantly different between the C and SS conditions. In conclusion, the older women's capacity to produce muscular force decreased after their performance of SS exercises. The mechanisms responsible for this effect do not appear to be related to muscle activation. Thus, if flexibility is to be trained, it is recommended that SS does not occur just before the performance of activities that require high levels of muscular force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine differences between hypermobile subjects and controls in terms of maximum strength, rate of force development, and balance. METHODS: We recruited 13 subjects with hypermobility and 18 controls. Rate of force development and maximal voluntary contraction (MVC) during single leg knee extension of the right knee were measured isometrically for each subject. Balance was tested twice on a force plate with 15-second single-leg stands on the right leg. Rate of force development (N/second) and MVC (N) were extracted from the force-time curve as maximal rate of force development (= limit Deltaforce/Deltatime) and the absolute maximal value, respectively. RESULTS: The hypermobile subjects showed a significantly higher value for rate of force development (15.2% higher; P = 0.038, P = 0.453, epsilon = 0.693) and rate of force development related to body weight (16.4% higher; P = 0.018, P = 0.601, epsilon = 0.834) than the controls. The groups did not differ significantly in MVC (P = 0.767, P = 0.136, epsilon = 0.065), and MVC related to body weight varied randomly between the groups (P = 0.921, P = 0.050, epsilon = 0.000). In balance testing, the mediolateral sway of the hypermobile subjects showed significantly higher values (11.6% higher; P = 0.034, P = 0.050, epsilon = 0.000) than that of controls, but there was no significant difference (4.9% difference; P = 0.953, P = 0.050, epsilon = 0.000) in anteroposterior sway between the 2 groups. CONCLUSION: Hypermobile women without acute symptoms or limitations in activities of daily life have a higher rate of force development in the knee extensors and a higher mediolateral sway than controls with normal joint mobility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The aim of this study was to compare through surface electromyographic (sEMG) recordings of the maximum voluntary contraction (MVC) on dry land and in water by manual muscle test (MMT). Method Sixteen healthy right-handed subjects (8 males and 8 females) participated in measurement of muscle activation of the right shoulder. The selected muscles were the cervical erector spinae, trapezius, pectoralis, anterior deltoid, middle deltoid, infraspinatus and latissimus dorsi. The MVC test conditions were random with respect to the order on the land/in water. Results For each muscle, the MVC test was performed and measured through sEMG to determine differences in muscle activation in both conditions. For all muscles except the latissimus dorsi, no significant differences were observed between land and water MVC scores (p = 0.063–0.679) and precision (%Diff = 7–10%) were observed between MVC conditions in the muscles trapezius, anterior deltoid and middle deltoid. Conclusions If the procedure for data collection is optimal, under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during wáter immersion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared voluntary (VOL) and electrically evoked isometric contractions by muscle stimulation (EMS) for changes in biceps brachii muscle oxygenation (tissue oxygenation index, ΔTOI) and total haemoglobin concentration (ΔtHb = oxygenated haemoglobin + deoxygenated haemoglobin) determined by near-infrared spectroscopy. Twelve men performed EMS with one arm followed 24 h later by VOL with the contralateral arm, consisting of 30 repeated (1-s contraction, 1-s relaxation) isometric contractions at 30% of maximal voluntary contraction (MVC) for the first 60 s, and maximal intensity contractions thereafter (MVC for VOL and maximal tolerable current at 30 Hz for EMS) until MVC decreased ∼30% of pre-exercise MVC. During the 30 contractions at 30% MVC, ΔTOI decrease was significantly (P < 0.05) greater and ∼tHb was significantly (P < 0.05) lower for EMS than VOL, suggesting that the metabolic demand for oxygen in EMS is greater than VOL at the same torque level. However, during maximal intensity contractions, although EMS torque (∼40% of VOL) was significantly (P < 0.05) lower than VOL, ΔTOI was similar and ΔtHb was significantly (P < 0.05) lower for EMS than VOL towards the end, without significant differences between the two sessions in the recovery period. It is concluded that the oxygen demand of the activated biceps brachii muscle in EMS is comparable to VOL at maximal intensity. © Springer-Verlag 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analysed whether a significant relationship exists between the torque and muscle thickness and pennation angle of the erector spinae muscle during a maximal isometric lumbar extension with the lumbar spine in neutral position. This was a cross-sectional study in which 46 healthy adults performed three repetitions for 5 s of maximal isometric lumbar extension with rests of 90 s. During the lumbar extensions, bilateral ultrasound images of the erector spinae muscle (to measure pennation angle and muscle thickness) and torque were acquired. Reliability test analysis calculating the internal consistency (Cronbach's alpha) of the measure, correlation between pennation angle, muscle thickness and torque extensions were examined. Through a linear regression the contribution of each independent variable (muscle thickness and pennation angle) to the variation of the dependent variable (torque) was calculated. The results of the reliability test were: 0.976–0.979 (pennation angle), 0.980–0.980 (muscle thickness) and 0.994 (torque). The results show that pennation angle and muscle thickness were significantly related to each other with a range between 0.295 and 0.762. In addition, multiple regression analysis showed that the two variables considered in this study explained 68% of the variance in the torque. Pennation angle and muscle thickness have a moderate impact on the variance exerted on the torque during a maximal isometric lumbar extension with the lumbar spine in neutral position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a muscle contracts it produces vibrations. The origin of these vibrations is not known in detail. The purpose of this study was to determine the mechanism associated with muscle vibrations. Mechanisms which have been proposed in the literature were described as theories (cross-bridge cycling, vibrating string and unfused motor unit theories). Specific predictions were derived from each theory, and tested in three conceptually different studies. In the first study, the influence of recruitment strategies of motor units (MUs) on the vibromyographic (VMG) signal was studied in the in-situ cat soleus using electrical stimulation of the soleus nerve. VMG signals increased with increasing recruitment and decreased with increasing firing rates of MUs. Similar results were obtained for the human rectus femoris (RF) muscle using percutaneous electrical stimulation of the femoral nerve. The influence of MU activation on muscle vibrations was studied in RF by analyzing VMG signals at different percentages (0-100%) of the maximal voluntary contraction (MVC). In our second study, we tested the effects of changing the material properties of the in-situ cat soleus (through muscle length changes) on the VMG signal. The magnitude of the VMG signal was higher for intermediate muscle lengths compared to the longest and the shortest muscle lengths. The decreased magnitude of the VMG signal at the longest and at the shortest muscle lengths was associated with increased passive stiffness and with decreased force transients during unfused contractions, respectively. In the third study, the effect of fatigue on muscle vibrations was studied in human RF and vastus lateralis (VL) musc1es during isometric voluntary contractions at a leveI of 70% MVC. A decrease in the VMG signal magnitude was observed in RF (presumably due to derecruitment of MUs) and an increase in VL (probably related to the enhancement of physiological tremor, which may have occurred predorninantly in a mediolateral direction) with fatigue. The unfused MU theory, which is based on the idea that force transients produced by MUs during unfused tetanic contraction is the mechanism for muscle vibrations, was supported by the results obtained in the above three studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alteration of the occlusion and the position of the jaw can affect the muscles of the neck, due to a relationship between the masticatory and cervical systems. Thus, the objective of this study was to verify whether the bite in maximal clenching effort, in centric occlusion, in individuals with clinically normal occlusion, and without a history of dysfunction in the masticatory system, influences the electromyographic activity of the upper trapezius muscle. A total of 19 normal individuals participated in the study, 14 of which were women (average age of 25.4 ± 4.14 years), and 5 were men (average age of 24.11 ± 3.28 years). The root mean square (RMS) amplitude and median frequency (MF) of the upper trapezium muscle with 40% and 60% of maximal voluntary contraction were analyzed under pre- and post-maximal clenching effort conditions in centric occlusion. The electromyographic signal was collected with a sampling frequency of 2. kHz and the value in RMS was obtained by a moving window of 200. ms. The paired Student's t-test was used to compare RMS amplitude and MF under pre- and post-maximal clenching effort conditions. The level of significance for each comparison was set to p<0.05. This study concluded that in individuals without a history of dysfunction of the masticatory system, maximum clenching effort in centric occlusion does not alter the electromyographic signal of the upper trapezius. © 2009 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the test-retest reliability of biceps brachii tissue oxygenation index (TOI) parameters measured by near-infrared spectroscopy during a 10-s sustained and a 30-repeated (1-s contraction, 1-s relaxation) isometric contraction task at 30% of maximal voluntary contraction (30% MVC) and maximal (100% MVC) intensities. Eight healthy men (23 to 33 yr) were tested on three sessions separated by 3 h and 24 h, and the within-subject reliability of torque and each TOI parameter were determined by Bland-Altman+/-2 SD limits of agreement plots and coefficient of variation (CV). No significant (P>0.05) differences between the three sessions were found for mean values of torque and TOI parameters during the sustained and repeated tasks at both contraction intensities. All TOI parameters were within+/-2 SD limits of agreement. The CVs for torque integral were similar between the sustained and repeated task at both intensities (4 to 7%); however, the CVs for TOI parameters during the sustained and repeated task were lower for 100% MVC (7 to 11%) than for 30% MVC (22 to 36%). It is concluded that the reliability of the biceps brachii NIRS parameters during both sustained and repeated isometric contraction tasks is acceptable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of whole-body cryotherapy (WBC) on proprioceptive function, muscle force recovery following eccentric muscle contractions and tympanic temperature (TTY). Thirty-six subjects were randomly assigned to a group receiving two 3-min treatments of −110 ± 3 °C or 15 ± 3 °C. Knee joint position sense (JPS), maximal voluntary isometric contraction (MVIC) of the knee extensors, force proprioception and TTY were recorded before, immediately after the exposure and again 15 min later. A convenience sample of 18 subjects also underwent an eccentric exercise protocol on their contralateral left leg 24 h before exposure. MVIC (left knee), peak power output (PPO) during a repeated sprint on a cycle ergometer and muscles soreness were measured pre-, 24, 48 and 72 h post-treatment. WBC reduced TTY, by 0.3 °C, when compared with the control group (P<0.001). However, JPS, MVIC or force proprioception was not affected. Similarly, WBC did not effect MVIC, PPO or muscle soreness following eccentric exercise. WBC, administered 24 h after eccentric exercise, is ineffective in alleviating muscle soreness or enhancing muscle force recovery. The results of this study also indicate no increased risk of proprioceptive-related injury following WBC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The current study investigated the change in neuromuscular contractile properties following competitive rugby league matches and the relationship with physical match demands. Design: Eleven trained, male rugby league players participated in 2–3 amateur, competitive matches (n = 30). Methods: Prior to, immediately (within 15-min) and 2 h post-match, players performed repeated counter-movement jumps (CMJ) followed by isometric tests on the right knee extensors for maximal voluntary contraction (MVC), voluntary activation (VA) and evoked twitch contractile properties of peak twitch force (Pt), rate of torque development (RTD), contraction duration (CD) and relaxation rate (RR). During each match, players wore 1 Hz Global Positioning Satellite devices to record distance and speeds of matches. Further, matches were filmed and underwent notational analysis for number of total body collisions. Results: Total, high-intensity, very-high intensity distances covered and mean speed were 5585 ± 1078 m, 661 ± 265, 216 ± 121 m and 75 ± 14 m min−1, respectively. MVC was significantly reduced immediately and 2 h post-match by 8 ± 11 and 12 ± 13% from pre-match (p < 0.05). Moreover, twitch contractile properties indicated a suppression of Pt, RTD and RR immediately post-match (p < 0.05). However, VA was not significantly altered from pre-match (90 ± 9%), immediately-post (89 ± 9%) or 2 h post (89 ± 8%), (p > 0.05). Correlation analyses indicated that total playing time (r = −0.50) and mean speed (r = −0.40) were moderately associated to the change in post-match MVC, while mean speed (r = 0.35) was moderately associated to VA. Conclusions: The present study highlights the physical demands of competitive amateur rugby league result in interruption of peripheral contractile function, and post-match voluntary torque suppression may be associated with match playing time and mean speeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effects of alcohol ingestion on lower body strength and power, and physiological and cognitive recovery following competitive Rugby League matches. Nine male Rugby players participated in two matches, followed by one of two randomized interventions; a control or alcohol ingestion session. Four hours post-match, participants consumed either beverages containing a total of 1g of ethanol per kg bodyweight (vodka and orange juice; ALC) or a caloric and taste matched non-alcoholic beverage (orange juice; CONT). Pre, post, 2 h post and 16 h post match measures of countermovement jump (CMJ), maximal voluntary contraction(MVC), voluntary activation (VA), damage and stress markers of creatine kinase (CK), C-reactive protein (CRP), cortisol, and testosterone analysed from venous blood collection, and cognitive function (modified Stroop test) were determined. Alcohol resulted in large effects for decreased CMJ height(-2.35 ± 8.14 and -10.53 ± 8.36 % decrement for CONT and ALC respectively; P=0.15, d=1.40), without changes in MVC (P=0.52, d=0.70) or VA (P=0.15, d=0.69). Furthermore, alcohol resulted in a significant slowing of total time in a cognitive test (P=0.04, d=1.59), whilst exhibiting large effects for detriments in congruent reaction time (P=0.19, d=1.73). Despite large effects for increased cortisol following alcohol ingestion during recovery (P=0.28, d=1.44), post-match alcohol consumption did not unduly affect testosterone (P-0.96, d=0.10), CK (P=0.66, d=0.70) or CRP(P=0.75, d=0.60). It appears alcohol consumption during the evening following competitive rugby matches may have some detrimental effects on peak power and cognitive recovery the morning following a Rugby League match. Accordingly, practitioners should be aware of the potential associated detrimental effects of alcohol consumption on recovery and provide alcohol awareness to athletes at post-match functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This study examined the effects of overnight sleep deprivation on recovery following competitive rugby league matches. METHODS: Eleven male, amateur rugby league players performed two competitive matches, followed by either a normal night's sleep (~8h; CONT) or a sleep deprived night (~0h; SDEP) in a randomised fashion. Testing was conducted the morning of the match, and immediately post-match, 2h post and the next morning (16h post-match). Measures included counter-movement jump (CMJ) distance, knee extensor maximal voluntary contraction (MVC), voluntary activation (VA), venous blood creatine kinase (CK) and C-reactive protein (CRP), perceived muscle soreness and a word-colour recognition cognitive function test. Percent change between post- and 16h post-match was reported to determine the effect of the intervention the next morning. RESULTS: Large effects indicated a greater post- to 16h post-match percentage decline in CMJ distance following SDEP compared to CONT (P=0.10-0.16; d=0.95-1.05). Similarly, the percentage decline in incongruent word-colour reaction times were increased in SDEP trials (P=0.007; d=1.75). Measures of MVC did not differ between conditions (P=0.40-0.75; d=0.13-0.33), though trends for larger percentage decline in VA were detected in SDEP (P=0.19; d=0.84). Further, large effects indicated higher CK and CRP responses 16h post-match during SDEP compared to CONT (P=0.11-0.87; d=0.80-0.88). CONCLUSIONS: Sleep deprivation negatively affected recovery following a rugby league match, specifically impairing CMJ distance and cognitive function. Practitioners should promote adequate post-match sleep patterns or adjust training demands the next day to accommodate the altered physical and cognitive state following sleep deprivation.