985 resultados para Maximal lactate steady state of blood lactate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on previous research which shows parallelism between the saliva and blood lactate response during incremental exercise, we hypothesized that a "maximum salivary lactate steady state" (saliva-MLSS) might exist. Thus, the aim of the present investigation was to establish 1) which lower limit for the increase in salivary lactate concentration during a constant workload (i.e., from the 10th to the 20th min) test could be used to determine the saliva-MLSS and 2) if the exercise intensity corresponding to the saliva-MLSS is identical to that evoking the (blood) MLSS. Twelve male amateur athletes of mean (+/-SD) age 24+/-5 year were selected for the study. Based on the results of a previous maximal cycle ergometer test for lactate threshold (LT) determination, each subject performed consecutive constant workload tests of 20-min duration on separate days for MLSS determination, Blood and saliva (25 mu l) samples were collected at 0, 10, and 20 min during the tests for lactate determination. A Student's t-test for paired data demonstrated that a salivary lactate increase of 0.8 mM corresponded to the saliva-MLSS. At this value, indeed, no significant differences were observed between the mean (V) over dot O-2, and W values corresponding to the MLSS and the saliva-MLSS. In conclusion, the present findings indicate that 0.8 mM is the lower limit for the increase in saliva lactate concentration during a constant load test and thus is that which might be used as a reference to determine saliva-MLSS. Furthermore, saliva-MLSS might be used as an alternative to MLSS determination in blood samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two stationary intracavity atomic qubits. However, it might be hard in practice to trap two atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotating disk voltammetry is routinely used to study electrochemically driven enzyme catalysis because of the assumption that the method produces a steady-state system. This assumption is based on the sigmoidal shape of the voltammograms. We have introduced an electrochemical adaptation of the King-Altman method to simulate voltammograms in which the enzyme catalysis, within an immobilized enzyme layer, is steadystate. This method is readily adaptable to any mechanism and provides a readily programmable means of obtaining closed form analytical equations for a steady-state system. The steady-state simulations are compared to fully implicit finite difference (FIFD) simulations carried out without any steady-state assumptions. On the basis of our simulations, we conclude that, under typical experimental conditions, steady-state enzyme catalysis is unlikely to occur within electrode-immobilized enzyme layers and that typically sigmoidal rotating disk voltammograms merely reflect a mass transfer steady state as opposed to a true steady state of enzyme intermediates at each potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steady state of a two spin system coupled to an isotropic environment and to each other through a dipolar interaction and under irradiation by a monochromatic, circularly polarized radio frequency field is determined ab initio using thermodynamic arguments. This steady state is used to describe the well known nuclear Overhauser effect in liquids. The steady state is also derived from the Solomon-Bloch set of equations used to describe the driven spin. It is shown that in the limit of weak driving, the two solutions coincide. (C) 1999 American Institute of Physics. [S0021-9606(99)71210-9].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to analyze the validity of the velocity corresponding to the onset of blood lactate accumulation (OBLA) and critical velocity (CV) to determine the maximal lactate steady state (MLSS) in soccer players. Twelve male soccer players (21.5 ± 1.0 years) performed an incremental treadmill test for the determination of OBLA. The velocity corresponding to OBLA (3.5 mM of blood lactate) was determined through linear interpolation. The subjects returned to the laboratory on 7 occasions for the determination of MLSS and CV. The MLSS was determined from 5 treadmill runs of up to 30-minute duration and defined as the highest velocity at which blood lactate did not increase by more than 1 mM between minutes 10 and 30 of the constant velocity runs. The CV was determined by 2 maximal running efforts of 1,500 and 3,000 m performed on a 400-m running track. The CV was calculated as the slope of the linear regression of distance run versus time. Analysis of variance revealed no significant differences between OBLA (13.6 ± 1.4 km·h-1) and MLSS (13.1 ± 1.2 km·h-1) and between OBLA and CV (14.4 ± 1.1 km·h-1). The CV was significantly higher than the MLSS. There was a significant correlation between MLSS and OBLA (r = 0.80), MLSS and CV (r = 0.90), and OBLA and CV (r = 0.80). We can conclude that the OBLA can be utilized in soccer players to estimate the MLSS. In this group of athletes, however, CV does not represent a sustainable steady-state exercise intensity. © 2005 National Strength & Conditioning Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten untrained males (UC) and 9 male endurance cyclists (EC) matched for age, weight and height performed one incremental maximal load test to determine AT and two to four 30-min constant submaximal load tests on a mechanically braked cycle ergometer to determine MLSS and MLSS intensity. AT was determined as the intensity corresponding to 3.5 mM blood lactate. MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. MLSS intensity (EC = 282.1 ± 23.8 W; UC = 180.2 ± 24.5 W) and AT (EC = 274.8 ± 24.9 W; UC = 187.2 ± 28.0 W) were significantly higher in trained group. However, there was no significant difference in MLSS between EC (5.0 ± 1.2 mM) and UC (4.9 ± 1.7 mM). The MLSS intensity and AT were not different and significantly correlated in both groups (EC: r = 0.77; UC: r = 0.81). We conclude that MLSS and the validity of AT to estimate MLSS intensity during cycling, analyzed in a cross-sectional design (trained x sedentary), do not depend on the aerobic capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the critical speed (CS) for track cycling and to assess whether a lactate steady state occurs at this speed. Fourteen competitive cyclists performed the following tests on an official cycling track (333.3 m): 1) incremental test for determination of the intensity corresponding to 4 mM of blood lactate (onset of blood lactate accumulation, OBLA) and maximal oxygen uptake (VO(2)max); 2) CS: 3 maximal bouts for distances of 2, 4 and 6 km executed in random order and with a period of recovery of 40 to 50 min between bouts. CS was determined for each subject from the linear regression between the distance and the time taking to cycle it; 3) Endurance test in which subjects were instructed to pedal at 100% of their individually determined CS for 30 min. At the 10(th) and 30(th) min (or upon exhaustion), 25 mul of blood were collected from ear lobe for later analysis of blood lactate [Lac]b. An increase less than or equal to1 mM between 10 and 30 min of exercise was considered as the criterion for the occurrence of the lactate steady state. CS (49.6 +/- 8.6 ml.kg(-1).min(-1); 36.9 +/- 2.7 km.h(-1)) was significantly higher than OBLA (43.7 8.0 ml.kg(-1).min(-1); 35.24 +/- 2.6 km.h(-1)) although the two parameters were highly correlated (r=0.97). During the endurance test, only 8 of the 14 subjects completed the 30 min period at CS. of these 8 subjects, only 2 presented a lactate steady state. Time to exhaustion at CS was 20.3 +/- 1.6 min for the remaining 6 subjects. The 12 subjects who did not reach a lactate steady state presented mean [Lac]b values of 7.4 +/- 1.3 mM at 10 min and of 9.4 +/- 1.9 mM at the end of the test (exhaustion), characterizing an exercise intensity of high lactacidemia. on the basis of the present results, we can conclude that CS determined by a track cycling test seems to overestimate the intensity of the maximal lactate steady state for most subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Maximal lactate steady state (MLSS) corresponds to the highest blood lactate concentration (MLSSc) and workload (MLSSw) that can be maintained over time without continual blood lactate accumulation and is considered an important marker of endurance exercise capacity. The present study was undertaken to determine MLSSw and MLSSc in running mice. In addition, we provide an exercise training protocol for mice based on MLSSw.2. Maximal lactate steady state was determined by blood sampling during multiple sessions of constant-load exercise varying from 9 to 21 m/min in adult male C57BL/6J mice. The constant-load test lasted at least 21 min. The blood lactate concentration was analysed at rest and then at 7 min intervals during exercise.3. The MLSSw was found to be 15.1 +/- 0.7 m/min and corresponded to 60 +/- 2% of maximal speed achieved during the incremental exercise testing. Intra- and interobserver variability of MLSSc showed reproducible findings. Exercise training was performed at MLSSw over a period of 8 weeks for 1 h/day and 5 days/week. Exercise training led to resting bradycardia (21%) and increased running performance (28%). of interest, the MLSSw of trained mice was significantly higher than that in sedentary littermates (19.0 +/- 0.5 vs 14.2 +/- 0.5 m/min; P = 0.05), whereas MLSSc remained unchanged (3.0 mmol/L).4. Altogether, we provide a valid and reliable protocol to improve endurance exercise capacity in mice performed at highest workload with predominant aerobic metabolism based on MLSS assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9 +/- 2.9 years, 73.9 +/- 6.5 kg, 1.79 +/- 0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1 +/- 21.2 W vs. 148.2 +/- 15.5 W) and MLSSintensity (70.5 +/- 5.7% vs. 61.4 +/- 5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8 +/- 1.6 mM) and 100 rev min(-1) (4.7 +/- 0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)